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INTRODUCCIÓN

Desde finales del siglo XIX, los métodos homológicos basados en aspectos topológicos se

han utilizado en contextos algebraicos, como en el caso la homologı́a (o la cohomologı́a) de

grupos, de álgebras de Lie, etc. A mediados del siglo XX, Cartan y Eilenberg en [CE56]

recapitularon todos los avances hasta la fecha en Álgebra Homológica Relativa e introdujeron

nuevas e innovadoras ideas. Por ejemplo, los módulos proyectivos, los funtores exactos a

izquierda, el funtor de torsión, etc. Sin embargo era de esperar que hubiese un marco más

general que incluyera la cohomologı́a de haces. Las categorı́as Abelianas, definidas en [Buc55],

surgen de manera natural como el contexto adecuado en la búsqueda de éste objetivo.

La tesis de Verdier, [Ver96], bajo la supervisión de Grothendieck, trajo consigo otro enfoque

en los funtores derivados, por medio de la categorı́a derivada. La categorı́a derivada D(A)

de una categorı́a abeliana A es la categorı́a que se obtiene a partir de la categorı́a C(A) de

complejos no acotados invirtiendo de manera formal los cuasi-isomorfismos. De este modo, si

F : A → C es un funtor aditivo entonces, bajo ciertas hipótesis razonables, existe un funtor

RF : D(A) → D(C) con la propiedad de que si A ∈ A se considera como un complejo,

entonces la cohomologı́a del complejo RF(A) proporciona los funtores derivados a derecha

usuales.

Los trabajos [Hoc45], [Hel58], [Buc59], [EM65] impulsaron el desarrollo del Álgebra

Homológica Relativa. En esta teorı́a se estudian, no solo el funtor Ext, sino también sus

subfuntores. De este modo, las resoluciones proyectivas e inyectivas se sustituyen por

resoluciones por objetos proyectivos e inyectivos relativos y los epimorfismos y monomorfismos

usuales por epimorfismos y monomorfismos propios.
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Estas tres vertientes que acabamos de mencionar han dado lugar a nuevos descubrimientos

en el campo del Álgebra Homológica y al desarrollo de nuevas áreas de estudio que continúan

hasta el dı́a de hoy. En la presente memoria nos centramos en tres tópicos dentro del campo del

Álgebra Homológica (Relativa): las Categorı́as de Cartan-Eilenberg, la Pureza y las resolventes

Gorenstein proyectivas.

Categorı́as de Cartan-Eilenberg: Como hemos mencionado anteriormente, en [CE56]

Cartan y Eilenberg desarrollaron la forma de generar una familia de funtores {Fn}n∈Z a

partir de un funtor aditivo F entre categorı́as de módulos. El primer método, basado en un

procedimiento iterativo lento y elemental, conduce a la noción de funtores satélite. El otro,

que se basa en resoluciones, da lugar a la creación de los funtores derivados. En caso de

los funtores Hom y ⊗, las dos construcciones generan los mismos funtores. Con respecto

a éste último, por ejemplo, una resolución proyectiva PM de un módulo M es un complejo

no-negativo de módulos proyectivos junto con un cuasi-isomorfismo PM → M . En este

caso estamos considerando a M como un complejo cuya 0-componente es M y 0 en el resto.

Debido a la propiedad que define a los módulos proyectivos, una resolución proyectiva reducida

de un módulo será única salvo homotopı́a, lo cual permite obtener homologı́as isomorfas.

Además, el funtor interno Hom(PM ,−) en la categorı́a de complejos de módulos preserva

cuasi-isomorfismos. Los complejos que verifican esta última propiedad reciben el nombre de

complejos K-proyectivos. El módulo M y su resolución proyectiva reducida PM son isomorfos

en la categorı́a derivada D(R-Mod). Los primeros trabajos en categorı́as derivadas estaban a

menudo restringidos a complejos acotados inferiormente o directamente a complejos acotados,

debido en gran medida a la necesidad de trabajar con resoluciones proyectivas. De hecho, para

una categorı́a con suficientes proyectivos, un resultado clásico es que todo complejo acotado

inferiormente, admite una resolución proyectiva por un complejo acotado inferiormente de

módulos proyectivos, es decir, existe un cuasi-isomorfismo P → A, siendo P un complejo

de proyectivos acotado inferiormente. Por tanto es posible extender un funtor aditivo arbitrario

F : A → C a D+(A)→ D+(C).
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En [Spa88], Spaltenstein probó que, en una categorı́a con lı́mites directos exactos y

con suficientes proyectivos, todo complejo no acotado es cuasi-isomorfo a un complejo

K-proyectivo y que se podı́an usar los complejos K-proyectivos a la hora de calcular funtores

derivados.

En [Qui67] Quillen dio otra aproximación al problema de derivar ciertos funtores tanto

aditivos como no aditivos. En este trabajo Quillen introdujo la noción de estructura de modelos.

En pocas palabras, en el caso de la categorı́a de complejos sobre una categorı́a abeliana A, si

podemos definir una estructura de modelos en C(A) en donde las equivalencias débiles sean los

cuasi-isomorfismos, podemos asegurar la existencia de la categorı́a derivada y el funtor derivado

queda determinado en términos de los reemplazamientos cofibrantes-fibrantes de la estructura

de modelos. Sin embargo, en ocasiones sucede que los axiomas de estructura de modelos son

excesivamente restrictivos y excluyen algunos casos interesantes.

En este contexto, en [GNPR10], los autores proponen una aproximación alternativa al álgebra

homológica-homotópica teniendo presente el papel de los complejos K-proyectivos en las

categorı́as derivadas. El punto de partida es una categorı́a C con un par de clases de morfismos

(S,W ) de modo que S está contenido en la saturación W de W . Los morfismos en S se

denominan equivalencias fuertes y los deW equivalencias débiles. Un objeto (S,W )-cofibrante

es un objeto X ∈ C tal que HomC[S−1](X,w) es biyectiva para todo w ∈ W . Y una categorı́a

de Cartan-Elenberg es una categorı́a que tiene equivalencias débiles y fuertes y con suficientes

objectos cofibrantes. En otras palabras, su localización con respecto a las equivalencias débiles

es equivalente a la subcategorı́a plena de la localización con respecto a las equivalencias fuertes

formada por los objetos cofibrantes.

Vamos a ilustrar esta definición con un ejemplo sencillo. Consideremos la categorı́a

de complejos de R-módulos, C(R-Mod). En este caso, si tomamos como equivalencias

fuertes a la clase de equivalencias homotópicas y como equivalencias débiles, la clase

de cuasi-isomorfismos, la categorı́a de homotopı́a K(R-Mod) y la categorı́a derivada
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D(R-Mod) son localizaciones de C(R-Mod) con respecto a las equivalencias fuertes y débiles,

respectivamente. Los objetos (S,W )-cofibrantes en este caso son exactamente los complejos

K-proyectivos. Entonces (C(R-Mod), S,W ) es una categorı́a de Cartan-Eilenberg a izquierda

porque, para cada complejo A, existe un cuasi-isomorfismo P → A, siendo P un complejo

K-proyectivo.

A la vista del ejemplo anterior, la idea que subyace tras la definición de categorı́a de

Cartan-Eilenberg es la de acercarse a la localización por equivalencias débiles por medio de la

localización relativa de la subcategorı́a de objetos cofibrantes con respecto a las equivalencias

fuertes. De este modo, si las equivalencias fuertes tienen buenas propiedades, la localización

con respecto a las equivalencias débiles será más fácil de manejar. Esta es la abstracción formal

de la idea que subyace a la aproximación de Cartan-Eilenberg y al funtor derivado. Es por esto

por lo que los autores en [GNPR10] las denominan categorı́as de Cartan-Eilenberg. De hecho,

toda estructura de modelos de Quillen proporciona una categorı́a de Cartan-Eilenberg pero el

recı́proco no es cierto en general, es decir, podemos encontrar categorı́as de Cartan-Eilenberg

que no proceden de una categorı́a de modelos de Quillen (véase Proposition 4.3.6 y [GNPR10,

Example 6.2.7]). Esta aproximación también permite extender la teorı́a clásica de derivación de

funtores al caso no aditivo.

Pureza: Los morfismos más simples en la categorı́a de módulos son las secciones, es decir,

el morfismo inducido por los sumandos directos de un módulo. La noción de submódulo

puro generaliza, en cierto sentido, de forma satisfactoria la idea de sumando directo, al mismo

tiempo que permite probar algunos resultados que no son necesariamente ciertos para sumandos

directos. A modo de ejemplo, dado un submódulo de un módulo, puede que no sea posible

extender dicho submódulo a un sumando directo que verifique ciertas restricciones en la

cardinalidad, pero sin embargo sı́ es posible realizar dicha extensión de forma pura (consultar

el Teorema 5.1.6).

Los submódulos puros se pueden definir de manera equivalente en términos del funtor Hom
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y del funtor ⊗ y tambı́en como lı́mites directos de secciones. Constituyen la pieza fundamental

de la versión de Álgebra Homológica Relativa conocida como Álgebra Homológica Pura. Existe

otra definición equivalente de pureza en términos de sistemas de ecuaciones lineales. Hay varios

trabajos en la literatura que se acercan a la pureza de este último modo (véase, a modo de

ejemplo, [Pre09]), pero en la presente memoria no nos centraremos en este último punto de

vista.

Una de las razones de la importancia de la pureza en el contexto del Álgebra Homológica

Relativa es debido a su trascendencia en la Teorı́a de la Aproximación. Posiblemente el primer

ejemplo que ilustra la idea de aproximación apareció en el Teorema syzygy de Hilbert [Hil90]

con las resoluciones libres. Las resoluciones clásicas, dadas en [CE56], son las definidas por

inyectivos y por proyectivos. En ausencia de objetos proyectivos e inyectivos en una categorı́a,

la Teorı́a de la Aproximación busca calcular resoluciones por otras clases suficientemente

buenas. La noción que necesitamos para poder encontrar tales resoluciones es la de clase de

(pre)cubiertas o, su dual, el de clase de (pre)envolturas. De manera más precisa, una clase

F de objetos en una categorı́a abeliana C se llama clase de precubiertas si para cada objeto

X ∈ C existe una F-precubierta F → X , donde F ∈ F . Esto quiere decir que cada morfismo

F ′ → X , con F ′ ∈ F , admite una factorización F ′ → F → X . Para que la F-precubierta

g : F → X sea una F-cubierta se requiere la condición adicional de que si un morfismo ϕ es tal

que g ◦ ϕ = g, entonces ϕ es un isomorfismo. La clase F será entonces una clase de cubiertas,

si todo objeto admite una F-cubierta. Si F es una clase de precubiertas, entonces todo objetoX

admite una F-resolución a izquierda única salvo homotopı́a. El concepto dual es el de clase de

(pre)envolturas. Estos conceptos estan estrechamente ligados a los de pares de cotorsión, clases

deconstructibles y categorı́as abelianas de modelos, [Hov02], [Sto13a], [Sal79], [Eno12].

La mayorı́a de las clases en las que estamos interesados son cerradas bajo subobjetos y

cocientes puros, véase por ejemplo [Pin08], [BBE01], [EE05], [ET01], [RS98], [CPT10],

[Gill04], [Gill06]. Para una relación más general entre (pre)envolturas, (pre)cubiertas y pureza,

el lector puede consultar [Kra12] y [HJ08]. Como ejemplo, la categorı́a Qcoh(X) de haces
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cuasi-coherentes sobre un esquema X no tiene, en general, suficientes proyectivos, pero sin

embargo la clase F lat(X) de haces cuasi-coherentes planos es una clase de cubiertas, ver

[EE05] para el argumento usando pureza. En [Gill07], Gillespie prueba que, bajo ciertas

condiciones en el esquema X , existe una estructura de modelos monoidal en C(Qcoh(X)),

donde la F lat(X)-resolución de un haz cuasi-coherente es un reemplazamiento cofibrante.

Como consecuencia, el funtor Ext, que se calcula por medio de resoluciones inyectivas en

Qcoh(X) se puede calcular a partir de F lat(X)-resoluciones.

La noción de pureza en R-Mod se puede extender de diversas formas a otras categorı́as.

Aunque el punto en común de todas las posibles extensiones es que en cada caso es posible

establecer un teorema del tipo de ”existencia de suficientes objetos puros” como se ha

mencionado al comienzo de esta sección para R-Mod. Por ejemplo, la noción apropiada de

pureza en Qcoh(X) es la dada con respecto a los tallos, ya que es la que refleja la naturaleza

geométrica, al igual que sucede con la definición de haz cuasi-coherente plano. Existe, sin

embargo, otra definición categórica de pureza usando el funtor Hom y la definición categórica

de objeto finitamente presentado. Crawley-Boevey en [Craw94] muestra que las categorı́as

aditivas localmente finitamente presentadas constituyen el marco aditivo más general para

definir una buena Teorı́a de Pureza. Recordemos que una sucesión en una categorı́a aditiva

localmente finitamente presentada se dice que es pura cuando está proyectivamente generada

por la clase de los objetos finitamente presentados. Dado un cardinal regular λ, las categorı́as

localmente λ-presentables, que incluyen a las categorı́as de Grothendieck, proporcionan un

marco general en el cual se pueden tratar aspectos relacionados con subobjetos λ-puros (ver

[AR94, Section 2]). Para categorı́as trianguladas compactamente generadas, en [Bel00], los

objetos compactos desempeñan el papel de los objetos finitamente presentados, de modo que

los triángulos puros se definen por medio de objetos compactos.

Álgebra Homológica de Gorenstein: En una de las charlas del seminario Bourbaki

acerca de la Dualidad, Grothendieck definió el concepto de anillo Gorenstein, para un

anillo conmutativo R de tipo finito sobre un cuerpo. Un tal anillo será Gorenstein si es
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Cohen-Macaulay y un cierto R-módulo es localmente libre de rango 1. En [Bas62], Bass

caracteriza los anillos de dimensión autoinyectiva finita. Como se pone de manifiesto en

la introducción de [Bas63], Serre observó que los dos conceptos coinciden en un contexto

geométrico. La definición moderna de anillo Gorenstein y su condición equivalente aparece

en [Bas63]: un anillo conmutativo Noetheriano R es Gorenstein si para cada ideal primo p,

idRp <∞. Esta es la definición que se usa habitualmente en Geometrı́a Algebraica.

En [Aus67], Auslander introduce una nueva clase de módulos contenidos en la clase de

módulos finitamente generados, a los que llamó módulos deG-dimensión 0. Entonces se definió

la G-dimensión para módulos finitamente generados usando los módulos de G-dimensión 0. La

teorı́a se desarrolló posteriormente en [AB69]. Uno de los aspectos más destacados de este

nuevo invariante es que es más débil que la dimensión proyectiva pero aún ası́ comparte con

ella algunas propiedades. La teorı́a comenzó a interesar a los algebristas homológicos. Sin

embargo, hasta este momento, estaba definida sólo para módulos finitamente generados y se

comportaba bien para anillos especı́ficos.

En [EJ95] Enochs y Jenda dieron una aproximación más general a la teorı́a. En este trabajo,

ellos definen la noción de módulos “Gorenstein proyectivos” para un anillo arbitrario usando

complejos totalmente acı́clicos. Es una generalización de la noción de módulo finitamente

generado con G-dimensión 0 en el sentido de Auslander. Es conocido que, para anillos

Noetherianos, un módulo finitamente generado M es Gorenstein proyectivo si, y sólo si, tiene

G-dimensión 0 (ver [Chr00, Theorem 4.1.4]). La ventaja de esta nueva aproximación también

estriba en que permite definir nuevos conceptos tales como el de módulo Gorenstein inyectivo

y módulo Gorenstein plano. Por tanto el artı́culo [EJ95] supone un nuevo enfoque en la teorı́a.

Como resultado, tiene lugar la aparición de una nueva rama del Álgebra Homológica, que se

conoce como Álgebra Homológica de Gorenstein. Diversos autores han trabajado intensamente

en este campo y han estudiado su relación con la cohomologı́a de Tate (por ejemplo; [AM02],

[EJT93], [Chr00], [Iac05], [EJL04]). En términos generales, el principal problema en esta rama

es conseguir las correspondientes versiones de Gorenstein de los resultados clásicos del Álgebra
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Homológica para un anillo arbitrario. Pero ni siquiera se sabe la existencia de precubiertas

Gorenstein proyectivas para un anillo arbitrario. En este sentido, existen intentos para debilitar

la condición de un anillo de ser de Gorenstein ([Hol04], [Jør07]) para garantizar este resultado.

Jorgensen en [Jør07] averigua la relación entre complejo dualizante y localización de Bousfield

para complejos totalmente acı́clicos. De este modo demuestra que la clase de los módulos

Gorenstein proyectivos es una clase de precubiertas para anillos que admitan un complejo

dualizante. El resultado extiende la clase de anillos conocidos hasta esa fecha para los cuales se

conocı́a la existencia de precubiertas Gorenstein proyectivas.

A continuación vamos a resumir, por capı́tulos, los contenidos que se abordan en la presente

memoria.

Los capı́tulos (I), (II) y (III) son las partes introductorias de la memoria. En ellos

recapitulamos la terminologı́a y los resultados básicos conocidos que usaremos a lo largo de

la misma.

Capı́tulo IV

Este capı́tulo se centra en las Categorı́as de Cartan-Eilenberg a izquierda. De manera

breve mencionaremos la localización de categorı́as y las categorı́as derivadas y recordaremos

propiedades básicas de los complejos K-proyectivos, tanto en la categorı́a de homotopı́a

como en la categorı́a derivada. Posteriormente nos centramos en categorı́as Cartan-Eilenberg

a izquierda (A, S,W ) y en sus propiedades más importantes. Veremos que los objetos

(S,W )-cofibrantes y los objetos K-proyectivos presentan propiedades similares. Estudiamos,

para una categorı́a A, la estrecha relación que existe entre poseer una estructura de

Cartan-Eilenberg a izquierda y el problema de la subcategorı́a co-ortogonal para A[S−1], del

mismo modo que las categorı́as abelianas de modelos quedan caracterizadas por la existencia

de ciertos pares de cotorsión completos (los llamados pares de Hovey). De esta forma

quedará claro que el problema de saber si una terna (A, S,W ) constituye una categorı́a de
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Cartan-Eilenberg a izquierda es equivalente a probar que la subcategorı́a Acof , formada por los

objetos (S,W )-cofibrantes, es una subcategorı́a coreflectiva de A[S−1].

En [Pas12], el autor da un ejemplo y un contraejemplo de una categorı́a de Cartan-Eilenberg

a izquierda en C+(A) dependiendo de si A tiene o no suficientes proyectivos. En nuestro

resultado principal de este capı́tulo, damos un método general de construcción de estructuras de

Cartan-Eilenberg a izquierda que engloba en particular el ejemplo anterior. Pero incluso en el

caso en que C+(A) no es una categorı́a Cartan-Eilenberg a izquierda, como en el contraejemplo

de [Pas12], nuestro método permite construir subcategorı́as de Cartan-Eilenberg a izquierda no

triviales. La formulación precisa de nuestro resultado es la siguiente:

Teorema 4.4.5. Sea (F ,B) un par de cotorsión en una categorı́a abeliana con suficientes

F-objetos. Supongamos que la clase F es una clase resolvente, dg B̃∩Acic = B̃ y que el par de

cotorsión inducido (dg F̃ , B̃) tiene suficientes proyectivos. Entonces (C+(A) ∩ dg B̃, S ′,W ′)

es una categorı́a de Cartan-Eilenberg a izquierda.

Finalizaremos este capı́tulo mostrando la aplicabilidad del Teorema 4.4.5 en diferentes

categorı́as, entre las cuales destacamos las categorı́as de haces y de módulos sobre un anillo

Gorenstein.

Capitulo V

Este capı́tulo supone el comienzo de nuestra incursión en diferentes aspectos del Álgebra

Homológica Pura. Podemos dividirlo en dos partes: en primer lugar estudiamos la teorı́a general

de morfismos puros tanto geométricos como categóricos y una segunda parte sobre pureza en

categorı́as de haces cuasi-coherentes. Empezamos recordando la noción de morfismos λ-puros

en una categorı́a localmente λ-presentable, a los cuales denominaremos por monomorfismos

puros categóricos. Posteriormente definimos los monomorfismos puros geométricos para

categorı́as que tienen una estructura cerrada monoidal simétrica. De forma breve, son
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monomorfismos que se preservan bajo el producto tensorial con respecto a un objeto arbitrario.

Estudiamos su relación con los monomorfismos puros categóricos. Para el caso en que la

categorı́a ambiente es de Grothendieck cerrada monoidal simétrica, observamos que la noción

de pureza categórica implica la pureza geométrica. Esta observación tendrá consecuencias

destacables que se pondrán de manifiesto en los capı́tulos siguientes. Dedicaremos este capı́tulo

a probar la existencia de (pre)envolturas puro inyectivas dependiendo de la pureza considerada

en la categorı́a, lo cual nos proporciona la herramienta necesaria para proceder con el Álgebra

Homológica Pura.

Teorema 5.2.6. Sea C una categorı́a de Grothendieck cerrada monoidal simétrica. Todo objeto

admite una envoltura puro inyectiva geométrica.

En la tercera sección, nos centraremos en las categorı́as de haces de modulos OX-Mod y

de haces cuasi-coherentes Qcoh(X). En ellas surge, además, otra noción de pureza de manera

natural. Se trata en ambos casos de categorı́as de Grothendieck que poseen una estructura

cerrada monoidal simétrica. En el caso de OX-Mod probamos que la pureza geométrica se

puede caracterizar en términos de los tallos (de ahı́ su nombre). Entonces la clase de los

monomorfismos puros en OX-Mod entre objetos de Qcoh(X) nos dará una nueva clase de

sucesiones exactas cortas, que se pueden caracterizar en términos de las secciones sobre los

abiertos afines. A esta clase de exactitud la llamaremos “exactitud pura en los tallos”. De

alguna forma ésta exactitud en la categorı́a Qcoh(X) es más natural que la correspondiente a

la pureza geométrica en Qcoh(X), porque es, de hecho, el tipo de caracterización (en función

de los tallos) que aparece al estudiar, por ejemplo, los haces cuasi-coherentes planos. Después

de investigar la relación de la pureza en tallos con respecto a la pureza categórica, obtenemos el

resultado que garantiza la existencia de resoluciones inyectivas puras en tallos en Qcoh(X) sin

suponer ninguna condición adicional en el esquema X:

Teorema 5.4.8. Sea X un esquema arbitrario. Todo haz cuasi-coherente sobre X tiene una

envoltura puro inyectiva en tallos.
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Capı́tulo VI.

Dedicamos este capı́tulo a estudiar algunas clases de haces cuasi-coherentes que se obtienen a

partir de la pureza en tallos, ası́ como sus propiedades homológicas. La idea que perseguimos

es la de transferir algunos resultados conocidos en R-Mod a Qcoh(X).

La clase F lat(X) de haces cuasi-coherentes planos sobre un esquema X ha sido amplio

objeto de investigación en los últimos años, por tratarse de una elección natural para estudiar

tanto la categorı́a de homotopı́a, como la categorı́a derivada de haces cuasi-coherentes

([EGPT12], [Gill07], [Hov01], [MS11], [Mur07], [HS13]). Como ya hemos mencionado antes,

en [EE05] se prueba que la clase F lat(X) es una clase de cubiertas en Qcoh(X) usando la

pureza en tallos.

Dado un anillo asociativo R con identidad, un R-módulo a izquierda M se dice que es

absolutamente puro si cada sistema de ecuaciones lineales finito con términos independientes

en M , tiene una solución en M . Esto es equivalente a decir que M es un submódulo puro de

todo R-módulo que lo contiene. En ciertos aspectos esta clase de módulos se comportan como

los módulos inyectivos (véase [Mad67, Meg70, Pre09, Ste70] para un tratamiento general de

módulos absolutamente puros y [Pin05] para un estudio más reciente). De hecho, los anillos

Noetherianos se pueden caracterizar en términos de propiedades de los módulos absolutamente

puros. Concretamente, R es Noetheriano si, y sólo si, la clase de los R-módulos absolutamente

puros coincide con la clase de los R-módulos inyectivos ([Meg70]). En este capı́tulo

exponemos las propiedades principales de los haces de módulos (localmente) absolutamente

puros, tanto en la categorı́a Qcoh(X) como en OX-Mod, para el caso en que X es un esquema

localmente coherente. Por ejemplo, en la Proposición 6.2.7 mostramos que para comprobar

la pureza absoluta local en Qcoh(X) nos podemos restringir a un recubrimiento concreto

por abiertos afines del esquema X . Además también vemos que los haces cuasi-coherentes

localmente absolutamente puros son precisamente los OX-módulos absolutamente puros que

son cuasi-coherentes, véase el Lema 6.2.8. Esto es análogo a la cuestión formulada en
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[Hart77, II, §7, pg.135] para el caso de esquemas localmente Noetherianos (véase [Con00,

Lemma 2.1.3]). Entonces caracterizamos los subesquemas cerrados localmente Noetherianos

del espacio proyectivo Pn(A) (siendo A un anillo conmutativo y coherente) en términos de su

clase de haces cuasi-coherentes absolutamente puros:

Proposición 6.2.11. Un subesquema cerrado X ⊆ Pn(A) es localmente Noetheriano si, y sólo

si, cada haz cuasi-coherentes localmente absolutamente puro es localmente inyectivo.

Si X es un esquema Noetheriano, se sabe que la clase de los haces cuasi-coherentes

localmente inyectivos es una clase de cubiertas en Qcoh(X). Nosotros extendemos este

resultado a la clase de los haces cuasi-coherentes localmente absolutamente puros sobre un

esquema localmente coherente X .

Teorema 6.2.13. Sea X un esquema localmente coherente. Todo haz cuasi-coherente tiene una

cubierta localmente absolutamente pura.

Como hemos señalado anteriormente, la categorı́a Qcoh(X) es una categorı́a de

Grothendieck, por tanto existen los productos. Sin embargo no es un problema fácil, en

general, dar una descripción del objeto producto, debido en parte a que, a nivel de las

secciones, el producto de módulos no se comporta bien con respecto a las localizaciones o,

más generalmente, cuando lo tensorizamos por un módulo arbitrario, tomando como anillo

base un anillo conmutativo (los productos directos no conmutan con el tensor en general).

Incluso aunque se sabe que el producto tensor conmuta con productos directos al tensorizar

por módulos finitamente presentados, no está claro que el objeto producto en Qcoh(X) se pueda

calcular a partir del producto de los módulos de secciones en cada abierto afı́n, si no imponemos

condiciones adicionales en el haz estructural OX asociado a X (por ejemplo que OX(U) sea

finitamente presentado como OX(V )-módulo, para cada par de abiertos afines U ⊆ V ).

La ausencia de una descripción explı́cita del objeto producto trae consigo preguntas nuevas
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y relevantes relativas a la clase F lat(X) de haces cuasi-coherentes planos en X . Por ejemplo,

Murfet en [Mur07, Remark B.7] plantea la cuestión de si la clase F lat(X) es cerrada bajo

productos, cuando X es un esquema Noetheriano. Esta propiedad es crucial para probar

que en C(A-Mod), la categorı́a de complejos no acotados de A-módulos (siendo A un anillo

conmutativo Noetheriano) el complejo HomA(I, I ′) es un complejo de módulos planos, para

complejos inyectivos I, I ′ ∈ C(A-Mod). En este punto, queremos enfatizar que la noción

usual de planitud en Qcoh(X) no es categórica, como se demuestra en [ES12] (véase también

[Rum10]). Recientemente Saorı́n y Šťovı́ček en [SS11, 4.2] han dado una solución positiva a

esta cuestión para el caso de esquemas Dedekind. En su argumento ellos usan la caracterización

de Crawley-Boevey de las subcategorı́as de preenvolturas de la categorı́a de objetos finitamente

presentados en una categorı́a aditiva localmente finitamente presentada con productos (véase

[Craw94, Theorem 4.2]). Entonces ellos prueban que si X es Dedekind, la categorı́a de haces

coherentes localmente libres (los fibrados vectoriales) es una clase de preenvolturas dentro de

la categorı́a de haces coherentes, obteniendo como consecuencia de ello que su clausura para

lı́mites directos, la clase F lat(X), es cerrada bajo productos.

Si X es un esquema afı́n, existe una equivalencia canónica entre las clases F lat(X) y

F lat(R) (la clase de R-módulos planos) siendo X = Spec(R). Ahora, si X es de hecho

Dedekind, es bien conocido que F lat(R) coincide con la clase de los R-módulos libres de

torsión. De forma que, para un esquema arbitrario, tiene sentido definir la clase F de los haces

cuasi-coherentes localmente libres de torsión como la clase de los objetos F ∈ Qcoh(X) tales

que F(U) es unOX(U)-módulo libre de torsión, para cada abierto afı́n U . Esta clase contiene a

F lat(X) en general y, de hecho, coincide con ella para esquemas Dedekind.

Teorema 6.3.7. Sea X un esquema de integridad. El producto F de una familia {Fi}i∈I de

haces cuasi-coherentes localmente libres en Qcoh(X) es el subhaz cuasi-coherente maximal de
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∏
i∈I Fi. De manera más precisa, es de la forma

F =
∑

M∈Qcoh(X)
M⊆

∏
i∈I Fi

M.

Una consecuencia de este Teorema es que, para un esquema de integridad, la clase F induce

una teorı́a de torsión hereditaria.

Hemos comentado anteriormente que en [EE05, Theorem 4.1] se prueba la existencia de

cubiertas planas en Qcoh(X). Nosotros probamos la existencia de cubiertas con respecto a la

clase F . Este resultado se conoce desde los años 60 para el caso de un esquema de integridad

afı́n (véase [Eno63]).

Teorema 6.4.7. Todo haz cuasi-coherente sobre un esquema de integridad admite una cubierta

localmente libre de torsión.

Capı́tulo VII

Este es el último capı́tulo que dedicamos a Álgebra Homológica Pura. En él seguimos

considerando como marco general una categorı́a de Grothendieck cerrada monoidal simétrica.

Nuestro objetivo final es la definición de la categorı́a derivada pura (geométrica), para

especializarnos en el caso de un esquema.

Si A es una categorı́a localmente finitamente presentada, la pureza categórica define una

estructura exacta pura en A y produce la categorı́a derivada pura Dpur(A) estudiada, por

ejemplo, por Christensen y Hovey en [CH02] y Krause [Kra12]. Recientemente en [Gil14]

se prueba que esta categorı́a derivada pura se puede obtener como la categorı́a de homotopı́a de

dos estructuras de modelos, usando los puro inyectivos y los puro proyectivos. Sin embargo, a
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menos que el esquema X sea afı́n, la pureza categórica definida anteriormente para categorı́as

localmente finitamente presentadas no coincide con la pureza en tallos de Qcoh(X). En el

siguiente resultado, probamos que la categorı́a derivada relativa a la pureza geométrica aparece

como la categorı́a de homotopı́a de una categorı́a de modelos.

Teorema 7.2.7. Sea C una categorı́a de Grothendieck cerrada monoidal simétrica y C(C) la

categorı́a asociada de complejos. Entonces existe una estructura de modelos cofibrantemente

generada en C(C) cuyos objetos triviales son los complejos acı́clicos ⊗-puros, esto es, los

complejos X para los que X ⊗ S es exacto para todo S ∈ C. La estructura de modelos es

exacta con respecto a la categorı́a exacta C(C)⊗ de complejos tomando como clase propia de

sucesiones exactas cortas las sucesiones puntualmente ⊗-puras de complejos. De hecho, la

estructura de modelos es inyectiva en el sentido de que todos los complejos son cofibrantes y

los complejos trivialmente fibrantes son los objetos inyectivos de C(C)⊗, que son precisamente

los complejos contractibles con componentes ⊗-puro inyectivas. Llamaremos a esta estructura

de modelos la estructura de modelos ⊗-pura inyectiva en C(C) y su correspondiente categorı́a

de homotopı́a es la categorı́a derivada ⊗-pura, denotada por D⊗-pur(C).

Como caso particular del teorema anterior, obtenemos, aplicando la Proposición 7.2.8, la

siguiente aplicación a Qcoh(X):

Corolario 7.2.9. Sea X un esquema cuasi-separado. Sea E la estructura exacta heredada

por la pureza en tallos en Qcoh(X) y consideremos la categorı́a de complejos no acotados

C(Qcoh(X)). Entonces, con respecto a la estructura exacta puntual inducida de E , existe

una estructura de modelos exacta e inyectiva en C(Qcoh(X)). La categorı́a de homotopı́a

correspondiente es la categorı́a derivada pura en tallos (o la categorı́a derivada pura geométrica)

que denotaremos por Dstk-pure(Qcoh(X)).

Dado que tenemos dos nociones diferentes de pureza en una categorı́a de Grothendieck

cerrada monoidal simétrica, la pureza categórica y la geométrica, es natural preguntarse cuál
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es la relación entre ellas. En la Proposición 7.3.5 mostramos que hay un funtor canónico de la

categorı́a derivada λ-pura, Dλ-pur(C), a la categorı́a derivada⊗-pura, D⊗-pur(C), que admite un

adjunto a derecha.

En [MS11] Murfet y Salarian definen lo que ellos llaman la categorı́a derivada pura de

haces planos para un esquema Noetheriano y semi-separado, como el cociente de Verdier de

la categorı́a de homotopı́a de los haces planos K(F lat(X)) con la subcategorı́a localizante

Kpac(F lat(X)) de los complejos acı́clicos puros de haces. Los módulos planos están

estrechamente relacionados con las categorı́as localmente finitamente presentadas, debido al

Teorema de Representación de Crawley- Boevey [Craw94]. Este teorema establece que toda

categorı́a localmente finitamente presentada A es equivalente a la subcategorı́a plena F lat(A)

de Mod-A, deA-módulos a derecha planos, dondeA es el anillo funtor deA, y la equivalencia da

una correspondencia 1-1 entre sucesiones exactas puras en A y sucesiones exactas en F lat(A).

Esta equivalencia se extiende también a nivel de estructuras de modelos y, en particular, a las

categorı́as derivadas, de forma que obtenemos el siguiente:

Teorema 7.4.3. Sea A una categorı́a aditiva localmente finitamente presentada y sea F lat(A)

su subcategorı́a equivalente de módulos planos en Mod-A. Entonces Dpur(A) es equivalente

a D(F lat(A)), la categorı́a de homotopı́a de la estructura de modelos exacta e inyectiva en

C(F lat(A)).

Capı́tulo VIII

Dedicamos este último capı́tulo a la versión de Álgebra Homológica Relativa conocida como

Álgebra Homológica Gorenstein. Como hemos mencionado antes, el problema fundamental

en este caso es traducir propiedades básicas del Álgebra Homológica al contexto relativo

Gorenstein. En el capı́tulo nos centramos en los módulos Gorenstein proyectivos. El objetivo

principal es estudiar tópicos relacionados con resoluciones a derecha por módulos Gorenstein

proyectivos. En primer lugar, empezaremos considerando el problema de la existencia de
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preenvolturas Gorenstein proyectivas por módulos finitamente generados sobre un anillo local

n-Gorenstein. De hecho, en [HJ11] ya se prueba que para un anillo Noetheriano localR, la clase

de los modulos finitamente generados Gorenstein proyectivos es una clase de preenvolturas si,

y sólo si, R es Gorenstein. Nosotros damos una demostración alternativa de este hecho:

Teorema 8.2.8. Sea R un anillo n-Gorenstein local. Todo módulo M tiene una preenvoltura

Gorenstein proyectiva.

La razón que nos lleva a dar otra demostración de este resultado, es que nuestra demostración

nos va a permitir calcular explı́citamente las resoluciones a derecha Gorenstein proyectivas de

módulos finitamente generados, obteniendo ası́ el siguiente teorema:

Teorema 8.2.9. Sea R un anillo n-Gorenstein local. Si M es un R-módulo finitamente

generado, entonces M tiene una resolución por la derecha Gorenstein proyectiva finita.

El siguiente objetivo es investigar ciertos funtores derivados por la izquierda relativos de

Hom(-, -). Sobre un anillo conmutativo Noetheriano local, la existencia de una resolución a

derecha proyectiva de un módulo finitamente generado está garantizada. Si, además, R es

n-Gorenstein, sus cosyzygias son eventualmente Gorenstein proyectivas. Por tanto, para tales

anillos, todo módulo finitamente generado tiene asociado un complejo totalmente acı́clico de

proyectivos. En otras palabras, una resolvente proyectiva completa M → P → T, siendo

T un complejo de proyectivos. Denotamos por Êxti(−,−) el funtor derivado a izquierda de

Hom(-, -) el cual se obtiene al tomar un complejo proyectivo totalmente acı́clico que aparece en

alguna resolución a derecha proyectiva de la primera componente. Este funtor recibe el nombre

de funtor derivado de Tate. En el siguiente resultado, obtenemos un resultado de balance de

la homologı́a de Tate, esto es, Êxti(−,−) se puede calcular, o bien, tomando un complejo

proyectivo totalmente acı́clico que procede de la resolución a derecha proyectiva de la primera

componente, o bien, a partir de una resolución a izquierda proyectiva de la segunda componente.
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Teorema 8.3.2. Sea R un anillo n-Gorenstein local, y M , N R-módulos, donde M es

finitamente generado. Si M → P → T es una resolvente projectiva completa de M

y T′ → P → N es una resolución proyectiva completa de N entonces Êxti(M,N) :=

Hi(Hom(T, N)) ∼= Hi(Hom(M,T′)).

Otros funtores derivados a izquierda que centran nuestro interés son Exti(−,−) y

Gexti(−,−). Estos se obtienen usando una resolución a derecha proyectiva y una resolución

a derecha Gorenstein proyectiva, respectivamente. En el siguiente resultado, obtenemos una

sucesión exacta de tipo Avramov-Martsinkovsky (véase [AM02]) que conecta los tres funtores

derivados a izquierda definidos, Exti(−,−),Gexti(−,−) y Êxti(−,−).

Teorema 8.3.3. Sea R un anillo n-Gorenstein local. Sea M un R-módulo finitamente generado

y N un R-módulo. Entonces tenemos una sucesión exacta de funtores derivados a izquierda

0→ Êxtn−1(M,N)→ Extn−1(M,N)→ Gextn−1(M,N)→ Êxtn−2(M,N)→ . . .

. . .→ Gext0(M,N)→ Êxt−1(M,N)→ 0.
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INTRODUCTION

Starting from the end of the 19th century, topologically-based homological methods had

been carried into algebraic systems, such as the homology and the cohomology of groups, Lie

algebras... Cartan-Eilenberg in [CE56] summarized all developments done so far in Algebra as

well as they brought some innovative ideas. For instance, projective modules, left exact functors,

the torsion functor... However, it was foreseen that there would be a more general setting which

includes the sheaf cohomology. Abelian categories, given by [Buc55], were involved in the

search for that setting.

Verdier’s thesis, [Ver96], under Grothendieck’s supervisory, supplied another approach to

the derived functor through the derived category. The derived category D(A) of an abelian

categoryA is the category obtained from the category C(A) of complexes by formally inverting

quasi-isomorphisms. So if F : A → C is an additive functor then, under some reasonable

conditions, there is a functorRF : D(A)→ D(C) with the property that ifA ∈ A is considered

as a complex, then the cohomology of the complex RF(A) gives the ordinary right derived

functors.

By the works [Hoc45], [Hel58], [Buc59], [EM65], Relative Homological Algebra took its

way. In this theory, not only Ext functor but also its subfunctors are studied. So projective

and injective resolutions are replaced by relative projective and injective objects and proper

epimorphisms and monomorphisms.

These three steps that have just been mentioned led to new developments in Homological

Algebra and new areas of study which continue to this day. This thesis is built on three

topics in the realm of (Relative) Homological Algebra: Cartan-Eilenberg categories, purity and

Gorenstein projective resolvents.
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Cartan-Eilenberg categories: As pointed out above, Cartan-Eilenberg in [CE56]

introduced how to generate a family of functors {Fn}n∈Z from an additive functor F between

module categories. The slow and elementary iterative procedure leads to the notion of satellite

functors. The other one, which is based on resolutions, gives rise to the derived functors.

In case of Hom and ⊗, both of them coincide. For the latter one, for example, a deleted

projective resolution PM of a moduleM is a non-negative complex of projective modules with a

quasi-isomorphism PM →M . Here M is thought as a complex whose 0th component is M and

0 anywhere else. Because of the property of projective modules, a deleted projective resolution

of a module is unique up to homotopy, which permits to get isomorphic homology. Besides,

the internal hom functor Hom(PM ,−) on the category of complexes of modules preserves

quasi-isomorphisms. Such complexes are called K-projective complexes. The module M and

its deleted projective resolution PM are isomorphic in D(R-Mod). Early works on derived

categories were often restricted to either bounded or bounded below complexes because of

the need to work with projective resolutions. Indeed, for a category with enough projectives,

it is a classical result that every bounded below complex A has a resolution by a bounded

below complex of projectives, that is, a quasi-isomorphism P → A with a bounded below

complex P of projectives. So it makes possible to extend any additive functor F : A → C to

D+(A)→ D+(C).

In [Spa88], Spaltenstein showed that for a category having exact direct limits and enough

projectives, each unbounded complex is quasi-isomorphic to a K-projective complex and that

one could use K-projective complexes to compute derived functors.

Another approach to the problem of extending certain (non)-additive functors to derived

categories was given by [Qui67]. There, he introduced the model structure. Basically, in case

of the category of complexes over an abelian category A, if one finds a model structure on

C(A) whose weak equivalences are quasi-isomorphisms, then its derived category exists and

the derived functor is given in terms of fibrant-cofibrant replacements. But somehow axioms of

the model structure are quite strong which excludes some interesting categories.



21

In [GNPR10], it was purposed another approach to homological-homotopical algebra by

taking into account the role of K-projective complexes in derived categories. The initial data is

a category C with a pair (S,W ) of classes of morphisms such that S is included in the saturation,

W , of W . Morphisms in S and W are called strong and weak equivalences, respectively.

An (S,W )-cofibrant object is an object X ∈ C such that HomC[S−1](X,w) is bijective for all

w ∈ W . And a left Cartan-Eilenberg category is a category with weak and strong equivalences

and enough cofibrant objects. In other words, its localization at weak equivalences is equivalent

to the full subcategory of the localization at strong equivalences which consists of cofibrant

objects.

Let us embody it by a basic example. Consider the category of complexes C(R-Mod) over

R-Mod. If we take the class of homotopy equivalences and quasi-isomorphisms as strong

and weak equivalences, (S,W ), respectively, then the homotopy category K(R-Mod) and the

derived category D(R-Mod) are localizations of C(R-Mod) at strong and weak equivalences,

respectively. Besides, K-projective complexes are precisely (S,W )-cofibrant objects. Then

(C(R-Mod), S,W ) is a left Cartan-Eilenberg category because for each complex A, there is a

quasi-isomorphism P → A, with P a K-projective complex.

As seen in the previous paragraph, the idea of a Cartan-Eilenberg category is to approach

to the localization at weak equivalences through the relative localization of the subcategory of

cofibrant objects with respect to strong equivalences. So if strong equivalences are good enough

to manage, then to handle the localization at weak equivalences would be easier. It is the more

general formalism of the conventional idea which lays in the background of Cartan-Eilenberg’s

approach and the derived functor. This is why in [GNPR10] they call it like a Cartan-Eilenberg

category. Besides, each Quillen model structure produces a Cartan-Eilenberg category but the

converse need not be true, that is, there are Cartan-Eilenberg categories which don’t come from

any Quillen model categories, see Proposition 4.3.6 and [GNPR10, Example 6.2.7]. It enables

also to extend the classical theory of deriving functors for even non-additive functors.
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Purity: The simplest morphisms in a module category are sections, that is, direct summands.

The concept of pure submodules provides a nice generalization of direct summands, a type of

particularly well-behaved piece of a module. For example, maybe we may not extend any

submodule to a direct summand with a cardinality restriction, but there is a kind of result which

allows us to do it as a pure submodule, see Theorem 5.1.6.

Pure submodules are given equivalently in terms of Hom and ⊗ functors as well as they

are precisely direct limit of sections. So it supplies the basic nontrivial example of Relative

Homological Algebra, known as Pure Homological Algebra. There is also another equivalent

definition by using linear system. There are several works from this perspective, see for example

[Pre09], but we won’t focus on this point of view.

The reason why purity takes an important place in Relative Homological Algebra is its

efficient use in Approximation Theory. The first example possibly appeared in Hilbert’s syzygy

theorem in [Hil90] as free resolutions. The classical resolutions are injective and projective

resolutions given in [CE56]. In the lack of projective and injective objects in a category,

Approximation Theory looks for resolutions by possibly nice classes. Here, the concepts that we

need in order to have suitable resolutions are (pre)covering and (pre)enveloping classes. These

constitute the heart of this thesis. So, let us explain it a bit more. A class F of objects in an

abelian category C is called precovering if for every object X ∈ C there is a morphism F → X

with F ∈ F such that every morphism F ′ → X , F ′ ∈ F , has a factorization F ′ → F → X .

In order to be covering, for each object X ∈ C there must be an F-precovering morphism

g : F → X such that in case g ◦ ϕ = g, ϕ is an isomorphism. A precovering class F permits

an object X to have a left F-resolution which is unique up to homotopy. Its dual notion is a

(pre)enveloping class. These are closely related with cotorsion pairs, deconstructible classes

and abelian model categories, [Hov02], [Sto13a], [Sal79], [Eno12].

Most of the classes of our interest are closed under pure subobjects and pure quotients, for

example see [Pin08], [BBE01], [EE05], [ET01], [RS98], [CPT10], [Gill04], [Gill06] and for
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more general relations between (pre)envelope-(pre)cover and purity see [Kra12] and [HJ08].

As an example, it is unlikely that the category of quasi-coherent sheaves Qcoh(X) on a scheme

X has enough projectives, but the class of flat quasi-coherent sheaves, F lat(X), is a covering

class, see [EE05] by the purity argument. In [Gill07], Gillespie showed that under certain

conditions on the scheme X , there is a monoidal model category structure on C(Qcoh(X))

where a left F lat(X)-resolution of a quasi-coherent sheaf is a cofibrant replacement. This

results in that the Ext functor, which is calculated by injective resolutions in Qcoh(X), can be

computed through F lat(X)-resolutions.

The purity in R-Mod has several extensions in different kind of categories. But the common

point is that each one has a sort of enough pure-subobject result as mentioned at the beginning

for R-Mod. For example, the appropriate purity in Qcoh(X) is given on stalks as used in

F lat(X). There is also a categorical concept of purity by using Hom functor and the categorical

definition of finitely presentable object. It was shown by Crawley-Boevey in [Craw94] that

locally finitely presentable additive categories were the most general additive setup to define a

good purity theory. We recall that a sequence in a locally finitely presentable additive category is

said to be pure whenever it is projectively generated by the class of finitely presentable objects.

For some regular cardinal λ, locally λ-presentable categories, which include Grothendieck

categories, provides a general setting in which well-behaved λ-pure subobjects are treated,

see [AR94, Section 2]. For compactly generated triangulated categories, in [Bel00], compact

objects are regarded as an analogous of finitely presentable objects, so pure triangles are defined

through compact objects.

Gorenstein Homological Algebra: In a Bourbaki talk on Duality, Grothendieck defined a

commutative ring R of finite type over a field to be Gorenstein if it is Cohen-Macaulay and

a certain R-module is a locally free of rank 1. In [Bas62], Bass described rings of finite self

injective dimension. As it is noted in the introduction of [Bas63], it was observed by Serre that

both concepts coincide in a geometric context. And finally, the modern definition of Gorenstein

rings and its equivalent condition was given in [Bas63]: a commutative Noetherian ring R is
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Gorenstein if for each prime ideal p, idRp Rp <∞. This definition is mostly used in Algebraic

Geomerty.

In [Aus67], Auslander introduced a new class of modules contained in the class of finitely

generated modules, the so-called modules of G-dimension 0. And then the G-dimension was

defined for finitely generated modules using modules having G-dimension 0. Later, the theory

was developed in [AB69]. The nice part of this new invariant is that it is weaker than projective

dimension and it satisfies some properties of projective dimension. The theory caught the

attention of homological algebraists. But it was defined only for finitely generated modules

and had good behaviour over some special rings.

A more general approach to the theory was given in [EJ95]. There, the authors defined the

notion of ‘Gorenstein projective’ modules for any ring by using totally acyclic complexes. It is

a generalization of finitely generated modules having G-dimension 0 in Auslander’s sense. It is

known that over a Noetherian ring, a finitely generated moduleM is Gorenstein projective if and

only if it hasG-dimension 0 (see [Chr00, Theorem 4.1.4]). The advantage of that generalization

is also that it allows one to define new notions such as Gorenstein injective and Gorenstein

flat modules. The work of [EJ95] gave a new perspective in the theory. As a result, a new

branch in homological algebra which is known as Gorenstein homological algebra emerged.

Several people have worked intensively in this area and have studied its relation with Tate

cohomology (for example; [AM02], [EJT93], [Chr00], [Iac05], [EJL04]). Roughly speaking,

the main problem in this branch is to get Gorenstein counterparts of Homological Algebra for

a general ring. But even the existence of Gorenstein projective precovers over any ring isn’t

known yet. Several attempts were made to ease the condition of being Gorenstein ring, see

([Hol04], [Jør07]). In [Jør07], Jørgensen found out the relation between dualizing complex and

Bousfield localization for totally acyclic complexes. So he proved that the class of Gorenstein

projective modules is precovering over a ring which has a dualizing complex. The result extends

the class of rings on which the existence of Gorenstein projective precovers is known.
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Now, we shall summarize the contents of this memory.

Chapters (I), (II), (III) are the introductary parts of the memory. We recall some basic

terminologies and results which will be used in the rest. Needless to say, it is not claimed

originality in none of them.

Chapter IV

The main subject of this chapter is left Cartan-Eilenberg categories. We briefly mention the

localization of categories and derived categories and we recall basic properties of K-projectives

in the homotopy and the derived category. Later, we focus on left Cartan-Eilenberg

categories (A, S,W ) with their basic properties. We point out that (S,W )-cofibrat objects and

K-projectives have similar properties. This concept of categories has a strong relation with the

co-orthogonal subcategory problem forA[S−1] while abelian model categories are characterized

by two complete cotorsion pairs, the so-called Hovey pairs. To solve whether (A, S,W ) is a

left Cartan-Eilenberg category is the same as proving that the subcategory Acof consisting of

(S,W )-cofibrant objects is a coreflective subcategory of A[S−1].

In [Pas12], the author gives an example and a counterexample in C+(A) to left

Cartan-Eilenberg categories depending on whetherA has enough projectives. In the main result

of this chapter, we give a machinery through cotorsion pairs to produce left Cartan-Eilenberg

categories, which includes that example. And even when C+(A) is not a left Cartan-Eilenberg

category like in the counterexample, this method will allow to produce some nontrivial left

Cartan-Eilenberg subcategories. The precise formulation is the following:

Theorem 4.4.5. Let (F ,B) be a cotorsion pair in an abelian category with enough F objects.

Suppose that F is a resolving class, dg B̃ ∩Acic = B̃ and the induced cotorsion pair (dg F̃ , B̃)

has enough projectives. Then (C+(A) ∩ dg B̃, S ′,W ′) is a left Cartan-Eilenberg category.
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We finish by illustrating the applicability of Theorem 4.4.5 in different settings, including

categories of sheaves and modules over Gorenstein rings.

Chapter V

This chapter is the initiation of the series on topics in Pure Homological Algebra from various

aspects. It can be divided into two parts: a general theory about geometric-categorical pure

morphisms and purity in the category of quasi-coherent sheaves. We begin by recalling λ-pure

morphisms in a locally λ-presentable category, which we call categorical pure. We define the

geometrical pure monomorphism when a category has a closed symmetric monoidal structure.

Shortly, it is a monomorphism which is preserved under the tensor product by any object.

We look at its relation with the categorical pure monomorphisms. In case of a Grothendieck

category with a closed symmetric monoidal structure, we observe that the categorical one

implies the geometrical purity. This observation leads to several remarkable results that will be

mentioned in the subsequent chapters. This chapter is basically dedicated to prove the existence

of the pure injective (pre)envelopes depending on the purity and the category, which provides

the necessary tool to proceed Pure Homological Algebra.

Theorem 5.2.6. Let C be a closed symmetric monoidal an Grothendieck category. Then every

object can be (geometric) purely embedded in a geometric pure-injective object, that is, every

object has a geometrical pure-injective preenvelope.

In the third section, we zoom in the categories OX-Mod and Qcoh(X) where we face with

another purity notion. Both categories are Grothendieck categories with closed symmetric

monoidal structure. Once we focus in OX-Mod, we see that the property of geometrical purity

is exactly hidden in stalks. Moreover, the intersection of pure monomorphisms inOX-Mod with

Qcoh(X) provides a new class of short exact sequences, which are characterized on the sections

over affine open subsets. We call that new notion of short exact sequences to be stalkwise
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pure-exact. Somehow stalkwise pure short exact sequences in Qcoh(X) are more natural than

the geometrical one because it serves as the complementary of flat quasi-coherent sheaves. After

investigating the relation of stalkwise purity with the categorical pure, we get the result which

guarantees the minimal stalkwise pure injective resolutions in Qcoh(X) without assuming any

condition on the scheme:

Theorem 5.4.8. Let X be any scheme. Each quasi-coherent sheaf in Qcoh(X) has a stalkwise

pure injective envelope which is a stalkwise pure monomorphism.

Chapter VI

This chapter is about some classes of quasi-coherent sheaves concerning to the stalkwise

purity and their homological properties. The claim is to carry some known results in R-Mod

into Qcoh(X).

The class F lat(X) of flat quasi-coherent sheaves on a scheme X has been extensively used

during the last years, as a natural choice for studying both the homotopy category and the

derived category of quasi-coherent sheaves ([EGPT12], [Gill07], [Hov01], [MS11], [Mur07],

[HS13]). As mentioned before, it was proved in [EE05] that F lat(X) is a covering class in

Qcoh(X) by using stalkwise purity.

Given an associative ring R with unit, a left R-module M is absolutely pure if every finite

system of linear equations whose independent terms lie in M possesses a solution in M . This

is equivalent to saying that M is a pure submodule of any R-module that contains it. In some

aspects these behave like injective R-modules (see [Mad67, Meg70, Pre09, Ste70] for a general

treatment of absolutely pure modules and [Pin05] for a revisited study). In fact, Noetherian

rings can be characterized in terms of properties of absolutely pure modules. Namely, R is

Noetherian if and only if the class of absolutely pure R-modules coincides with the class of
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injective R-modules ([Meg70]). We will exhibit the main properties of (locally) absolutely pure

sheaves of modules, both in Qcoh(X) and in OX-Mod, in case X is locally coherent scheme.

For instance, we show in Proposition 6.2.7 that local absolutely purity in Qcoh(X) can be

checked on a particular affine covering of X . And we also see that locally absolutely pure

quasi-coherent sheaves are precisely the absolutely pure OX-modules that are quasi-coherent,

see Lemma 6.2.8. This is analogous to the question posted in [Hart77, II, §7, pg.135] for locally

Noetherian schemes (cf. [Con00, Lemma 2.1.3]). Then we characterize locally Noetherian

closed subschemes of the projective space Pn(A) (A a commutative and coherent ring) in terms

of its class of absolutely pure quasi-coherent sheaves:

Proposition 6.2.11. A closed subscheme X ⊆ Pn(A) is locally Noetherian if and only if every

locally absolutely pure quasi-coherent sheaf is locally injective.

If X is locally Noetherian scheme, it is known that the class of locally injective

quasi–coherent sheaves is covering in Qcoh(X). We extend this result to the class of locally

absolutely pure quasi-coherent sheaves on a locally coherent scheme X .

Theorem 6.2.13. Let X be a locally coherent scheme. Then every quasi–coherent sheaf in

Qcoh(X) admits a locally absolutely pure cover.

As pointed out before, Qcoh(X) is a Grothendieck category, so products always exist in

it. However it is hard to know an explicit description of this object because, at the level of

sections, the product of modules is not well-behaved in general with respect to localizations,

or more generally, when tensoring by an arbitrary module with respect to a commutative ring

(direct products do not commute with tensoring in general). But even though the tensor product

does commute with products with respect to finitely presented modules, it is not clear whether

the product object in Qcoh(X) can be computed from the product module of sections at each

affine open set if we do not impose extra assumptions on the sheaf of rings OX attached to

X (for instance if OX(U) is finitely presented as OX(V )-module, for each affine open subsets
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U ⊆ V ).

The lack of an explicit description of the product object leads to new and relevant questions

on the class F lat(X) of flat quasi-coherent sheaves on X . For instance, Murfet in [Mur07,

Remark B.7] raises the question of whether F lat(X) is closed under products, for X a

Noetherian scheme. This property is crucial to showing that in C(A-Mod), the category of

unbounded chain complexes of A-modules (A commutative Noetherian ring), the complex

HomA(I, I ′) is a complex of flat modules, for injectives I, I ′ ∈ C(A-Mod). We point out

that the usual notion of flatness in Qcoh(X) is not categorical, as it is shown in [ES12], (see

also [Rum10]). Recently Saorı́n and Šťovı́ček in [SS11, 4.2] have given a positive answer to this

question for Dedekind schemes. In their argument they use Crawley-Boevey’s characterization

of preenveloping subcategories of the category of finitely presentable objects in a locally finitely

presentable additive category with products (see [Craw94, Theorem 4.2]). So then they show

that if X is Dedekind, the category of locally free coherent sheaves (the vector bundles) is

preenveloping in the category of all coherent sheaves, obtaining as a byproduct that its closure

under direct limits, the class F lat(X), is closed under products.

If X is affine, there is a canonical equivalence between F lat(X) and the class F lat(R) of

flatR-modules, whereX = Spec(R). Now ifX is also Dedekind it is well known thatF lat(R)

coincides with the class of torsion-free R-modules. So, for an arbitrary scheme, it makes sense

to define the classF of locally torsion-free quasi–coherent sheaves as the class of F ∈ Qcoh(X)

such that F(U) is a torsion-free OX(U)-module, for each affine open set U . This class contains

F lat(X) in general, and indeed it coincides with it for Dedekind schemes.

Theorem 6.3.7. Let X be an integral scheme. The product F of a family {Fi}i∈I of

locally torsion-free quasi-coherent sheaves in Qcoh(X) is the largest quasi-coherent subsheaf
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of
∏

i∈I Fi. More concretely, it is of the form

F =
∑

M∈Qcoh(X)
M⊆

∏
i∈I Fi

M.

One of the consequences of this theorem is that, for an integral scheme, the class F induces

a hereditary torsion theory.

As mentioned before, flat covers in Qcoh(X) exist by [EE05, Theorem 4.1]. We show the

existence of covers with respect to the class F . This was known from the sixties in case X is

integral and affine due to [Eno63].

Theorem 6.4.7. Each quasi-coherent sheaf on an integral scheme has a locally torsion-free

cover.

Chapter VII

This chapter is the final chapter on Pure Homological Algebra. We keep working on the general

setting of a closed symmetric monoidal Grothendieck category. As the last aim, we deal with

the (geometric) pure derived category, specially that of a scheme.

IfA is a locally finitely presentable category, categorical purity defines a pure exact structure

in A and yields the pure derived category Dpur(A) studied for example by Christensen and

Hovey [CH02] and Krause [Kra12]. Recently in [Gil14] it has been shown that this pure

derived category can be obtained as the homotopy category of two model category structures by

using the pure projectives and the pure injectives. However, unless the scheme X is affine, the

categorical purity defined above for locally finitely presentable categories does not coincide with

the stalkwise purity on Qcoh(X). In the next result, we prove that the derived category relative

to ⊗-purity (= geometrical purity) comes up as a homotopy category of a model category.
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Theorem 7.2.7. Let C be a closed symmetric monoidal Grothendieck category and C(C) the

associated category of chain complexes. Then there is a cofibrantly generated model category

structure on C(C) whose trivial objects are the ⊗-pure acyclic complexes; that is, complexes X

for which X ⊗ S is exact for all S ∈ C. The model structure is exact with respect to the exact

category C(C)⊗ of chain complexes along with the proper class of degreewise ⊗-pure exact

sequences. In fact, the model structure is injective in the sense that every complex is cofibrant

and the trivially fibrant complexes are the injective objects of C(C)⊗, which are precisely the

contractible complexes with ⊗-pure injective components. We call this model structure the

⊗-pure injective model structure on C(C) and its corresponding homotopy category is the

⊗-pure derived category, denoted D⊗-pur(C).

As a particular instance of the previous theorem, we get by applying Proposition 7.2.8, the

following application to Qcoh(X):

Corollary 7.2.9. Let X be a quasi-separated scheme. Let E be the exact structure coming from

the stalkwise-purity in Qcoh(X), and let us consider the category of unbounded complexes

C(Qcoh(X)). Then with respect to the induced degreewise exact structure from E , there is an

exact and injective model category structure on C(Qcoh(X)). The corresponding homotopy

category is the stalkwise-pure derived category (or geometric pure derived category), which we

denote Dstk-pure(Qcoh(X)).

Having two different notions of purity in a general closed symmetric monoidal Grothendieck

category, the categorical purity and the geometrical purity, it is natural to ask what relationship

there is between them. In Proposition we show that there is a canonical functor from the λ-pure

derived category Dλ-pur(C) to the ⊗-pure derived category D⊗-pur(C), which admits a right

adjoint.

In [MS11] Murfet and Salarian define what they call the pure derived category of flat

sheaves for a semi-separated Noetherian scheme, as the Verdier quotient of the homotopy
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category of flat sheaves K(F lat(X)) with the localising subcategory Kpac(F lat(X)) of the

pure acyclic complexes of sheaves. Flat modules are intimately related with locally finitely

presentable categories due to Crawley-Boevey’s Representation Theorem [Craw94]. This

establishes that every additive locally finitely presentable additive category A is equivalent to

the full subcategory F lat(A) of Mod-A of unitary flat right A-modules, where A is the functor

ring of A and the equivalence gives a 1-1 correspondence between pure exact sequences in A

and exact sequences in F lat(A). This equivalence lifts to the level of model structures as well

and in particular to the derived categories, so we get the following:

Theorem 7.4.3. Let A be a locally finitely presentable additive category and let F lat(A)

be its equivalent full subcategory of flat modules in Mod-A. Then Dpur(A) is equivalent

to D(F lat(A)), the homotopy category of the injective exact model category structure on

C(F lat(A)).

Chapter VIII

Now, we change our route into Gorenstein Homological Algebra. As mentioned before, the

main problem in the theory is to translate some basic properties of Homological Algebra into

Gorenstein Homological Algebra. In the last chapter, the subject is Gorenstein projective

modules. The main idea is to handle topics related to right resolutions by using Gorenstein

projective modules. So firstly we begin by dealing with the existence of Gorenstein projective

preenvelopes for finitely generated modules over a local n-Gorenstein ring. As a matter of

fact, in [HJ11] it was already proved that over a local Noetherian ring R, the class of finitely

generated Gorenstein projective modules is preenveloping if and only if R is Gorenstein.We

give here an alternative proof of this fact:

Theorem 8.2.8. Let R be a local n-Gorenstein ring. Every finitely generated module M has a

Gorenstein projective preenvelope.
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The reason why we reprove it is that our proof enables us to compute right Gorenstein

projective resolutions of finitely generated modules. So we get the next result.

Theorem 8.2.9. Let R be a local n-Gorenstein ring. If M is a finitely generated R-module then

M has a finite right Gorenstein projective resolution.

The next claim is to investigate certain relative left derived functors of Hom(-, -). Over a

commutative local Noetherian ring, the existence of a right projective resolution of a finitely

generated module is guaranteed. If R is additionally n-Gorenstein, its coszygies are eventually

Gorenstein projective. So over such a ring, any finitely generated module M gives us a totally

acyclic complex of projectives, in other words, a complete projective resolvent M → P → T

with T a totally acyclic complex of projectives. We denote by Êxti(−,−) the left derived

functor of Hom(-, -) by taking a totally acyclic complex appearing in some right projective

resolution of the first component. This is called the Tate derived functor. In the next result, we

get a balance result on Tate homology, that is, Êxti(−,−) can be computed by taking a totally

acyclic complex arising from in the right projective resolution of the first component, or from a

left projective resolution of the second component.

Theorem 8.3.2. Let R be a local n-Gorenstein ring and M,N be R-modules where M

is finitely generated. If M → P → T is a complete projective resolvent of M and T′ →

P → N is a complete projective resolution of N then Êxti(M,N) := Hi(Hom(T, N)) ∼=

Hi(Hom(M,T′)).

Other left derived functors which are of our interest are Exti(−,−) and Gexti(−,−). These

are obtained by using a right projective resolution and a right Gorenstein projective resolution

of the first component, respectively. In the next result, we get an Avramov-Martsinkovsky-type

exact sequence connecting the left derived functors involving Exti(−,−),Gexti(−,−) and

Êxti(−,−) just as in [AM02].
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Theorem 8.3.3. Let R be a local n-Gorenstein ring. Let M be a finitely generated R-module

and N be an R-module. Then we have an exact sequence of left derived functors

0→ Êxtn−1(M,N)→ Extn−1(M,N)→ Gextn−1(M,N)→ Êxtn−2(M,N)→ . . .

. . .→ Gext0(M,N)→ Êxt−1(M,N)→ 0.



CHAPTER ONE

CATEGORIES

This chapter is intended to be a notebook on categories by the author. It is introductory to

category theory, so it contains very basic concepts and very well-known facts. Readers who are

familiar to the language of categories may skip this chapter.

1.1 Categories

Let us begin by giving the definition of a category.

Definition 1.1.1. A category C consists of

C1) a class of ‘objects’, Ob(C),

C2) a set HomC(X, Y ) of ‘morphisms’, denoted by f : X → Y , for each pair of objects

X, Y ∈ Ob(C),

C3) and a collection of mappings

◦XY Z : HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

for each triple X, Y, Z ∈ Ob(C). It is common to drop subscript expressions and to write

g ◦ f for the image of f ∈ HomC(X, Y ) and g ∈ HomC(Y, Z). These binary operations

are called compositions.

The data must satisfy the following:

C4) For any X ∈ Ob(C), there exists a kind of ‘identity morphism’ idX ∈ HomC(X,X) with

regard to idX ◦f = f and g ◦ idX = g wherever these are defined.

35
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C5) The composition ‘◦’ is associative, that is,

(f ◦ g) ◦ h = f ◦ (g ◦ h)

for any h ∈ HomC(X, Y ), g ∈ HomC(Y, Z) and f ∈ HomC(Z,U).

For any morphism f ∈ HomC(X, Y ), X and Y are called domain and codomain of f ,

respectively. We should point out that morphisms are not necessarily functions. It is just

a set of some directed relations from its domain to codomain. So some authors prefer to

call them ‘arrows’ instead of ‘morphisms’. In fact, a morphism is intuitively referred to a

structure-preserving mapping between two mathematical structures, because of etymological

reasons of the word ‘morph’. Many of main categories worked on have sets as objects and

structure-preserving functions as morphisms. For instance,

Set : the category of all sets with functions,

Grp : the category of all groups with group homomorphisms,

Ab : the category of all abelian groups and homomorphisms,

R-Mod : the category of all left R-modules with R-module homomorphisms,

Ring : the category of all rings with ring homomorphisms,

Top : the category of all topological spaces with continuous maps.

But now in category theory, the use of the terminology ‘morphism’ is much more extended to

that of functions.

A subcategory C ′ of a category C is a category whose class of objects, Ob(C ′), is a subclass

of Ob(C) with HomC′(X, Y ) ⊆ HomC(X, Y ), for all X, Y ∈ C ′, and whose identity morphism

idX for each object X ∈ C ′ is the same as in C.
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For any categorical concept, there is a dual concept obtained by reversing the direction of

morphisms in the definition. As a consequence, for every category C, the dual, or opposite,

category Cop of C has the same class of objects as Ob(C) and HomCop(X, Y ) := HomC(X, Y )

for any pair of objects X, Y ∈ C, that is, a morphism goes into Cop after switching its domain

and codomain. It is easy to see (Cop)op = C.

Besides, any property or a categorical statement has a dual version. For example, if PC is

a statement for a category C, then (Pop)C is the corresponding property of Cop phrased as a

property of C, that is, (Pop)C := PCop . Then we have:

Duality Principle: If a property P holds for all categories then Pop holds for all categories,

as well.

For a category C, the morphism class, Mor(C), is the disjoint union of morphism sets

HomC(X, Y ), for all X, Y ∈ C. For any pair of morphisms f : X → Y and f ′ : X ′ → Y ′, a

morphism from f to f ′ is a pair (g, h), g : X → X ′ h : Y → Y ′ such that the diagram

X
g //

f
��

X ′

f ′

��
Y h // Y ′

commutes. Let (s, t) : f ′′ → f and (g, h) : f → f ′ be morphisms in Mor(C). Then (g, h) ◦

(s, t) := (g◦s, h◦t) gives a composition in Mor(C). So Mor(C) is a category which is called the

arrow category for C. A category C is called small if Ob(Mor(C)) is a set. It is called λ-small

for some regular cardinal λ if the cardinality of Ob(Mor(C)) is less than λ. In a special case, an

ℵ0-small category is called finite.

Definition 1.1.2. An equivalence relation ∼ on the class of morphisms of a category C is called

a congruence on C if

(i) every equivalence class is contained in HomC(X, Y ) for some X, Y ∈ C,
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(ii) ∼ is closed under composition, that is, if f ∼ f ′ and g ∼ g′ then g ◦ f ∼ g′ ∼ f ′ when

compositions are defined.

Definition 1.1.3. Let C be a category with a congruence ∼. The quotient category of C with

respect to∼, C/∼, is a category whose objects are the same as objects of C and whose morphisms

are equivalence classes, [f ], that is, HomC/∼(X, Y ) := HomC(X, Y )/∼ with composition law

[g] ◦ [f ] := [g ◦ f ] when defined.

The main examples of congruences and quotient categories are the homotopy relation on

Top with homotopy category of topological spaces and its counterpart in algebra, the homotopy

relation on the category of complexes C(C) with homotopy category K(C) of complexes, which

will be detailed in Chapter 2.

Now, we give definitions of certain types of morphisms which play important roles in the

theory.

Definition 1.1.4. Let C be a category and f : X → Y be a morphism in C. It is said to be

section if there exists a morphism g : Y → X such that g ◦ f = idX .

retraction if there exists a morphism g : Y → X such that f ◦ g = idY .

isomorphism if there is a morphism g : Y → X in C such that f ◦ g = idY and g ◦ f = idX .

monomorphism if for any pair of morphisms g1, g2 : A⇒ X , the following holds:

f ◦ g1 = f ◦ g2 ⇒ g1 = g2,

epimorphism if for any pair of morphisms h1, h2 : Y ⇒ B, the following holds:

h1 ◦ f = h2 ◦ f ⇒ h1 = h2.
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bimorphism if f is both a monomorphism and an epimorphism.

The following is the list of some basic and known facts. Since retractions and epimorphisms

are dual notions of sections and monomorphisms, respectively, we just state some of them for

sections and monomorphisms. By duality principle, their dual come freely.

Remark 1.1.5. (i) Each class of morphisms in Definition 1.1.4 is closed under composition.

(ii) If f is an isomorphism, then a morphism g mentioned in the definition is unique. So we

denote it f−1 := g. Furthermore, if f and h are isomorphisms, (h ◦ f)−1 = f−1 ◦ h−1

when the composition is defined.

(iii) A morphism is an isomorphism if and only if it is both a section and a retraction.

(iv) Every section and isomorphism is a monomorphism.

(v) If g ◦ f is a section (monomorphism) then f is a section (monomorphism).

(vi) In Set,Grp,Ab and R-Mod, bimorphisms are precisely isomorphisms. But, for

example, in Top it does not hold.

(vii) For many categories whose objects are sets and morphisms are structure-preserving

functions, the notion of monomorphism is equivalent to the injectivity on the underlying

set. For example, Set, Grp, Ab,R-Mod, Ring, Top, ... In a category whose objects are

sets and whose morphisms are some certain functions, it is clear that a morphism which is

injective on the underlying set is a monomorphism. But the converse is not true in general.

For instance, in the category of divisible abelian groups with group homomorphisms, the

canonical morphism σ : Q → Q/Z of the additive groups of rational numbers to the

quotient group by the group of integers is not injective but it is a monomorphism in that

category.

(viii) Dually, in Set, Grp, Ab, R-Mod, Top, the notion of epimorphism is equal to the

surjectivity on the underlying set. As mentioned in (vii), it doesn’t always happen. For
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example, in the category of torsion-free abelian groups, a morphism f : A → B is

an epimorphism if and only if the factor group B/ Im(f) is a torsion group. Thus the

inclusion Z ↪→ Q is an epimorphism but not surjective.

Let (X, f) and (X ′, f ′) be two pairs where f : X → Y and f ′ : X ′ → Y are

monomorphisms in C. (X, f) ≤ (X ′, f ′) if there is a morphism h : X → X ′ such that

f ′ ◦ h = f , The morphism h is necessarily a monomorphism. So it is an equivalence relation,

i.e., (X, f) ∼ (X ′, f ′) if (X, f) ≤ (X ′, f ′) and (X ′, f ′) ≤ (X, f). In other words, (X, f) is

equivalent to (X ′, f ′) if and only if there is an isomorphism h : X → X ′ such that f ′◦h = f . An

equivalence class [X, f ] of a monomorphism f into Y is called a subobject of Y . Sometimes,

by abuse of notation, we denote a subobject [X, f ] of Y as X ⊂ Y . At first sight, it seems that

it is not well-defined to define subobjet of a subobject, because a subobject is a pair containing

a morphism whose codomain is fixed. But by a small trick, we may get a subobject, that is, if

[T, t] is a subobject of X and [X, f ] is a subobject of Y , then [T, f ◦ t] is a subobject of Y . By

light of this knowledge, we may write it as T ⊂ X ⊂ Y . A category C is called well-powered

provided that each object in C has a representative class of subobjects that is a set.

The dual notion of subobject is a quotient object. Let (f,X) and (f ′, X ′) be two pairs where

f : Y → X and f ′ : Y → X ′ are epimorphisms in C. (f ′, X ′) ≤ (f,X) if there is a morphism

h : X → X ′ such that h ◦ f = f ′. Again, we get an equivalence relation. (f,X) is said to be

equivalent to (f ′, X ′) if (f ′, X ′) ≤ (f,X) and (f,X) ≤ (f ′, X ′). An equivalence class [f,X]

is called a quotient object of Y . A category C is called co-(well-powered) provided that each

object in C has a representative class of quotient objects that is a set.

Definition 1.1.6. Let C be a category and X be an object. X is said to be

initial object if HomC(X,M) consists of one element for every M ∈ Ob(C),

terminal (final) object if HomC(M,X) consists of one element for every M ∈ Ob(C),

zero object if it is both an initial object and a final object.
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It is clear that each of initial, final and zero objects of a category is unique up to

isomorphisms, if it exists. If a category C has the zero object, we denote it by 0.

Proposition 1.1.7. Let C be a category with the initial objectX and the terminal object Y . Then

the following are equivalent:

(i) C has the zero object.

(ii) X and Y are isomorphic.

(iii) HomC(Y,X) 6= ∅.

(iv) HomC(A,B) 6= ∅ for all A,B ∈ C.

Proof. The implications (i ⇒ ii ⇒ iii) are easy. Suppose now (iii). So there is a morphism

f : Y → X . Since X is an initial object and Y is a terminal object, take A → X → Y → Z,

(iv) follows. Assume (iv). Take a morphism f from HomC(Y,X). Then it is an isomorphism.

Indeed, the composition of f with the unique morphism h : X → Y gives f ◦ h = idX and

h ◦ f = idY because Y is a terminal object and X is an initial object.

If a zero object 0 exists, for any objects X, Y ∈ C, the zero map 0 : X // Y is the unique

morphism A→ 0→ B.

Definition 1.1.8. A category C is called preadditive if for each pair of objects X, Y ∈ C,

HomC(X, Y ) is endowed with the structure of an abelian group in such a way that the

composition of morphisms is biadditive with respect to these structures, that is,

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2

whenever it is defined.
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Note that if a category C is preadditive and has the zero object, a morphism f is a

monomorphism in C if and only if it satisfies the following: (f ◦ g = 0 ⇒ g = 0). Its

dual is valid for an epimorphism, as well.

1.2 Functors

If there are two mathematical objects, to compare them is always a natural stimulation. Here,

the concept that serve as comparison of categories are functors.

Definition 1.2.1. A functor F from a category C to a category D, F : C → D, consists of:

- a mapping Ob(C)→ Ob(D), X  F (X),

- a mapping HomC(X, Y )→ HomD(F (X), F (Y )) for all X, Y ∈ C, f  F (f)

such that F preserves compositions and identity morphisms, that is, F (g ◦ f) = F (g) ◦ F (f)

when g ◦ f is defined in C and F (idX) = idF (X). In case that C and D are preadditive, F is said

to be additive if F preserves abelian structures of morphisms, i. e., F (f + f ′) = F (f) + F (f ′)

where f, f ′ ∈ HomC(X, Y ) for all X, Y ∈ C.

Sometimes a functor as in the definition is called covariant . When a functor F satisfies

all conditions above but changes directions of morphisms, it is called ‘contravariant’, that is, it

takes a morphism f : X → Y in C and send it to F (f) : F (Y )→ F (X). In fact, a contravariant

functor is nothing but just a covariant functor on the dual category of domain or codomain, i.e.

if F is a contravariant functor, then F can be written as a covariant functor from Cop to D or

from C to Dop.

There are many examples of functors, but we just recall some of the basic ones that will be

used pretty much in this memory.
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Example 1.2.2. (Standard functors) Let C be any category.

(i) idC : C → C, the identity functor on C, keeps objects and morphisms the same.

(ii) If C ′ is a subcategory of C, ι : C ′ ↪→ C is the canonical inclusion functor that sends each

morphism f ∈ C ′ to f in C.

(iii) If C/∼ is a quotient category of C, then Q : C → C/∼ is the canonical functor that assigns

to each morphism f its equivalence class [f ].

(iv) There is a bifunctor

HomC(-, -) : Cop × C → Set

where HomC(-, -)(A,B) := HomC(A,B) and for f : A′ → A and g : B → B′

HomC(f, g) : HomC(A,B)→ HomC(A′, B′)

is a function with HomC(f, g)(h) := g ◦ h ◦ f .

Definition 1.2.3. Let F : C → D be a functor. Consider, for every pair of objects X, Y ∈ C,

the mapping

HomC(X, Y )→ HomD(F (X), F (Y )).

The functor F is called

faithful if the mapping mentioned above is injective for all X, Y ∈ C,

full if the mapping mentioned above is surjective for all X, Y ∈ C,

fully faithful if it is both full and faithful.

Now we return to observing the set valued hom functors which have an essential role in

Homological Algebra.



44

Definition 1.2.4. An object X is called

generator (cogenerator) if HomC(X, -) (HomC(-, X)) is a faithful functor,

projective (injective) if HomC(X, -) (HomC(-, X)) preserves epimorphisms. We denote

Proj(C) or Proj for the class of projective objects in C. The notation Inj(C) or Inj stands

for the class of injective objects in C.

Proposition 1.2.5. An objectX is projective in C if and only if for each epimorphism f : A→ B

and each morphism g : X → B, there exists a morphism h : X → A such that f ◦ h = g.

Dually, an object X is injective if and only if for each monomorphism f : A → B and each

morphism g : A→ X , there exists a morphism h : B → X such that h ◦ f = g.

Proposition 1.2.6. An objectX is generator (cogenerator) if and only if whenever f, g : A⇒ B

are distinct morphisms, there exists a morphism h : X → A (s : B → X) such that f ◦h 6= g◦h

(s ◦ f 6= s ◦ g).

Functors are machineries which link categories to other categories. Natural transformations

do it for functors.

Definition 1.2.7. Let F,G : C → D be two functors. A natural transformation τ : F → G is a

family of morphisms {τX}X∈C , τX : F (X) → G(X), in D such that the following diagram is

commutative for each morphism f : X → Y in C

F (X)
τX //

F (f)

��

G(X)

G(f)

��
F (Y )

τY // G(Y ).

An easy argument shows that if τ : F → G and θ : G→ T are natural transformations then

the componentwise composition θ ◦ τ = {θX ◦ τX}X∈C is again a natural transformation. From
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this point, it is natural to consider the category of functors, Fun(C,D), from C to D. Then for

F,G : C ⇒ D functors, the class Nat(F,G) of natural transformations would be the class of

morphisms. For any functor F , the natural transformation idF := {idF (X)}X∈C is the identity

natural transformation for F . But the problem occurs in requiring to be Nat(F,G) a set. Under

the condition of C a small category, that problem is solved. If C and D are preadditive and C is

small, the full subcategory category Add(C,D) of all additive functors is preadditive.

Definition 1.2.8. Let F,G : C → D be two functors. A natural transformation τ : F → G is

said to be an isomorphism if there is a natural transformation σ : G→ F such that σ ◦ τ = idF

and τ ◦ σ = idG. In that case, it is said that F is isomorphic to G and denoted by F ∼= G.

Note that being a natural transformation τ an isomorphism is equivalent to being τX an

isomorphism for each X ∈ Ob(C).

Definition 1.2.9. Let F : C → D be a functor. It is called an

isomorphism if there is a functor G : D → C such that F ◦G = idD and G ◦ F = idC ,

equivalence if there is a functor G : D → C such that F ◦G ∼= idD and G ◦ F ∼= idC .

Proposition 1.2.10. Let F : C → D be a functor. Then

(i) it is an isomorphism if and only if it is fully faithful and bijective on objects,

(ii) it is an equivalence if and only if it is fully faithful and satisfies the following:

for each object D ∈ D there is an object X ∈ C such that F (X) ∼= D.

At first sight, our mathematical background makes us think that the right notion of

‘isomorphism’ between categories is that of functor isomorphism. But in Category Theory,

we deal with objects and morphisms. Looking for isomorphic categories by isomorphism of

functors is quite restrictive. Even though an object may not return to itself, it is still under control
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by equivalence functors. Besides, equivalence functors preserve and reflect all categorical

properties. So in Category Theory, equivalence functors are sufficiently useful.

Now, let C be a small category. There is a canonical functor known as Yoneda embedding

Y : C → Fun(Cop,Set), (1.2.1)

Y (A) := HomC(-, A). The reason why it is called embedding is the following.

Proposition 1.2.11. (Yoneda Lemma)[Ste75, Proposition IV.7.3] Let F : Cop → Set be any

functor. Then

Nat(Y (A), F ) ∼= F (A)

for any A ∈ C.

If C is preadditive, then Y will be an embedding in Add(Cop,Ab).

1.3 Limits and colimits

So far we have dealt with basic ingredients of category theory. Now it is time to put some

flavor in it. In most of well-known categories, there are some special objects which make these

categories more meaningful and help significantly to solve some problems within them, such as

direct sums, direct limits, push-out diagrams,.. and their duals. Somehow we need some kind

of concepts which are similar to them in more general categories. In this section, we introduce

the general notions of limits and colimits of a functor, which involves these objects as particular

cases.

Definition 1.3.1. For a given a functor F : D → C, a cone on F consists of

- an object L in C, and
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- for every object D ∈ D, a morphism αD : L → F (D) in C, in such a way that for

every morphism d : D → D′ in D, αD′ = F (d) ◦ αD, that is, the following diagram is

commutative

L
αD

||

αD′

""
F (D)

F (d)
// F (D′).

Let (L′, {α′D}D∈D) and (L, {αD}D∈D) be two cones on F . A cone morphism f : L′ → L is

a morphism on the underlying category C such that αD ◦ f = α′D for every D ∈ D. So all cones

on F constitute a category denoted Cone(F ). For simplicity, sometimes we denote a cone just

by the element L in order to prevent rudeness of notations because its morphisms come already

with it.

Definition 1.3.2. If F : D → C is a functor, then a cone L on F is called limit of F provided

that if (L′, {α′D}D∈D) is a cone on F , then there is a unique cone morphism f : L′ → L.

In other words, a cone L on F is a limit of F if and only if it is a terminal object in Cone(F ).

Because of the essential uniqueness of terminal objects, if it exists, a limit of a functor is unique

up to isomorphisms, as well. Therefore when a limit of a functor F exists, it is denoted by

limF . Conversely, a terminal object of C can be written as a limit of a functor F : I → C,

where I is the empty category. A category which admits all limits of functors whose domain is

small is called complete.

Proposition 1.3.3. [HS79, Theorem 29.3] Let F be a functor and let (L, {αD}D∈D) be a cone

on F . Then the following are equivalent:

(i) (L, {αD}D∈D) is a limit of F .

(ii) (Hom(X,L), {Hom(X,αD)}D∈D) is a limit of Hom(X,−) ◦ F for each X ∈ Ob(C).
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It means that a limit of a functor F is a sort of object limF in such a way that every covariant

Hom(X,−) has a distributive property over limit, that is,

Hom(X, limF ) ∼= lim Hom(X,F (−))

for allX ∈ C. As mentioned above, the notion of limit is the extract of certain objects satisfying

a sort of universal properties, which are useful tools in the realm of Homological Algebra. We

state here their definitions in terms of limits.

Definition 1.3.4. Let C be a category.

Equalizer : Let I be a category with two objects and morphisms

a, b : 1⇒ 2

with identities. The limit of any functor F : I → C is called the equalizer of F (a) and

F (b) and denoted by Eq(F (a), F (b)). A category C which admits all possible equalizers,

that is, limits of all possible functors F : I → C with I defined above, is said to have

equalizer.

Product : Let I be a discrete category, that is, the only morphisms are identities. The limit of

any functor F : I → C, if exists, is called product of {F (i)}i∈I and denoted by
∏

I F (i).

The canonical morphisms πi :
∏

I F (i) → F (i) are called projections. If a category C

admits limits of all functors F : I → C where I is any discrete small category, then it is

said to have products.

Pullback : Let I be a category with three objects and morphisms

3

b
��

1 a
// 2
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with identities. The limit of any functor F : I → C is called pullback of F (a) and F (b).

A category which admits limits of any functor F : I → C with I defined above is said to

have pullbacks. As a special case, if F (a) is a monomorphism, i.e. F (a) is a subobject,

the pullback of F (a) and F (b) is called inverse image of F (1) under F (b) and it is denoted

by F (b)−1(F (1)). If both F (1) and F (3) are subobjects of F (2), it is called intersection

of F (1) and F (3), denoted by F (1) ∩ F (3).

Inverse limit : Let I be a directed class, that is, a partially ordered class with the property that

each pair of elements has an upper bound. The limit of any functor F : Iop → C is called

inverse limit.

Another notion which is a particular case of equalizers is that of kernel of a morphism.

Definition 1.3.5. Let C be a category with the zero object. Let f : X → Y be a morphism in C.

A kernel of f is a morphism k : K → X in C such that f ◦ k = 0 and for every k′ : K ′ → X

with f ◦ k′ = 0, there exists a unique g : K ′ → K such that k ◦ g = k′, in other words, it is an

equalizer of the zero morphism, 0, and f , Eq(0, f). If exists, it is denoted by Kerf . A category

which admits kernels of all morphisms is said to have kernels.

Here is a list of some known facts for any category C:

(i) For a pair of morphisms f, g : X ⇒ Y in C, the canonical morphism Eq(f) → X , if

exists, is a monomorphism.

(ii) For a given family {Ci}i∈I of objects of C, projections πi, if
∏

I Ci exists, are

epimorphisms.

(iii) If C is a preadditive category with the zero object, Eq(f, g) ∼= Ker(f − g) for each pair of

morphisms f, g : X ⇒ Y .

(iv) If C is a preadditive category with the zero object, a morphism f : X → Y is a

monomorphism if and only if Kerf exists and is equal to 0.
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(v) Products are inverse limit of finite subproducts. So if C has inverse limits and finite

products, then it has products. See [HS79, Proposition 22.5].

(vi) Limits preserve monomorphisms, i.e., if F,G : I ⇒ C are functors with a natural

transformation η := (ηi)i∈I : F → G where each ηi is a monomorphism and if limF

and limG exist, then the unique morphism limF → limG is a monomorphism.

(vii) If C has the zero object, then finite products and kernels, when they exist, can be obtained

from certain type of pullback diagrams. The converse is true when a category has finite

products and equalizers, that is, if f : X1 → Y and g : X2 → Y are morphisms in C then

Eq(f ◦ π1, g ◦ π2) gives pullback of f, g. See [HS79, Theorem 21.3]

(viii) Every pullback of a monomorphism (retraction) is a monomorphism (retraction). See

[HS79, Proposition 21.7].

We have chosen to introduce these special objects as a particular instance of limits. These

special objects are closely related each other. But the converse is also possible, that is, under

some conditions, limits can be written in terms of these special objects.

Proposition 1.3.6. [Ste75, Proposition 8.2] Let C be a preadditive category with the zero object

and let F : I → C be a functor where I is a small category. If C has products and kernels then

limF = Ker(
∏
i∈I

F (i)→
∏
λ

F (t(λ)))

where the index of the second product runs over all morphisms, λ : i→ j, in I and t(λ) := j.

The dual of all notions given above: cocones, colimits, coequalizers, cokernels, coproducts,

pushouts, direct limits, cocompleteness, respectively. So the duals of the given properties hold

for them, as well. As a notation, if X ⊆ Y a subobject in a category C, it is common to denote

Y/X for the cokernel of the inclusion X → Y .
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Note that the category of functors, Func(C,D), with C a small category, inherits all the nice

properties ofD. Limits and colimits in Fun(C,D) are obtained pointwise. The argument is valid

for Add(C,D) if C,D are preadditive, see [Ste75, Section IV.7].

The next proposition shows a case where completeness and cocompleteness aren’t far away

from each other as one could think. In the second chapter, there will be another example, locally

presentable categories, where cocompleteness implies completeness.

Proposition 1.3.7. [HS79, Example 23.9.(11)] If C is a small category, then the following are

equivalent:

(i) C is complete.

(ii) C is cocomplete.

(iii) C is equivalent to a complete lattice.

1.4 Abelian categories

Abelian categories are the most coarse categories that ensure the existence of all required tools

to do Homological Algebra. We should point out that the notions of kernels and cokernels

in a category, as well as their existence, must be consistent in order to get nice factorization

properties, in other words, to define exactness of sequences. It was firstly introduced by [Buc55]

under the name exact category which is an abelian category without the requirement of the

existence of direct sums. The importance of being preadditive light up here, see Theorem 1.4.7.

Before giving directly the definition of Abelian category, we develop it according to what we

need. All categories in this section are assumed to posses the zero object.

Definition 1.4.1. Let f : X → Y be a morphism in a category C. Then it is said to be a
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normal monomorphism if it is a kernel of a morphism in C.

normal epimorphism if it is a cokernel of a morphism in C.

Proposition 1.4.2. [HS79, Corollary 39.4] Let C be a category having kernels and cokernels

and f be a morphism in C. Then

(i) f is a normal monomorphism if and only if f ∼= Ker(Cokerf).

(ii) f is a normal epimorphism if and only if f ∼= Coker(Kerf).

Note that being a normal monomorphism or epimorphism is preserved under equivalence,

that is, for example, if f : X → Y and f ′ : X ′ → Y are equivalent monomorphisms where f is

normal, so is f ′.

Proposition 1.4.3. [HS79, Proposition 39.8] Assume that C has kernels. If A and A′ are

subobjects of X , where A is normal, then A ∩ A′ exists.

Proof. Let m : A → X and m′ : A′ → X be subobject monomorphisms of X where m =

Ker(f) for some f : X → Y . It is easy to check that Ker(m ◦ f) is the intersection of A and

A′.

Definition 1.4.4. A category C having kernels and cokernels is called

normal if each monomorphism is normal and every morphism is (epi, mono)-factorizable.

conormal if each epimorphism is normal and every morphism is (epi, mono)-factorizable.

exact if it is both normal and conormal.

We will see that the condition of (epi, mono)-factorization in exact category is automatic

when a category is preadditive.
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Corollary 1.4.5. [HS79, Corollary 39.11] An exact category is well-powered if and only if it is

co-(well-powered)

Proof. It follows easily from Proposition 1.4.2.

Lemma 1.4.6. [HS79, Lemma 39.12] Suppose that C is a category having kernels and

cokernels. If a morphism f : X → Y is of the form f = h◦g where g is a normal epimorphism,

then Coker(Kerf) is factorized over g.

Proof. Since g is a normal epimorphism, by Proposition 1.4.2, g = Coker(Kerg). The fact

that f ◦ Ker(g) = 0 implies the existence of a unique morphism t : Kerg → Kerf such that

Kerf ◦ t = Kerg. Then Coker(Kerf) ◦Kerg = 0, so there exists a unique morphism g′ such that

Coker(Kerf) = g′ ◦ g.

Theorem 1.4.7. [HS79, Theorem 39.13] Suppose that C has kernels and cokernels and each

epimorphism is a normal epimorphism. Then the following are equivalent.

(i) C is conormal.

(ii) If f is a morphism in C with Ker(f) = 0, then f is a monomorphism.

(iii) If a morphism f is of the form f = h ◦ Coker(Kerf), then h is a monomorphism.

(iv) Every morphism in C has (normal epi, mono)-factorization.

Condition (ii) is always satisfied when a category is preadditive.

Proposition 1.4.8. [HS79, Proposition 39.18] Suppose that C has kernels and cokernels and

each epimorphism is a normal epimorphism. Then C is conormal.

Proof. To prove (ii) in Theorem 1.4.7, take a morphism f : X → Y ∈ C such that Kerf =

0. Suppose that there are morphisms g, g′ : A ⇒ X in C with f ◦ g = f ◦ g′. So, we
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consider m : X → Coeq(g, g′), coequalizer of g and g′. Thus there is a unique morphism

h : Coeq(g, g′) → X such that f = h ◦ m. Note that idX : X → Coker(Kerf) = X . By

Lemma 1.4.6, there is a morphism m′ : Coeq(g, g′)→ X such that m′ ◦m = idX , which means

that m is a section, so g = g′.

By the duality principle, all results given above can be stated for normal categories, as well.

So we have the following:

Proposition 1.4.9. [HS79, Proposition 39.19] If C has equalizers and coequalizers such that

each monomorphism and epimorphism are normal, then C is exact.

A preadditive category with kernels and cokernels is normal (conormal) if and only if every

monomorphism (epimorphism) is normal.

Theorem 1.4.10. [HS79, Theorem 39.15] Let C be an exact category and let f : X → Y be a

morphism in C

(i) The canonical morphism f : Coker(Kerf)→ Ker(Cokerf) in the commutative diagram

Kerf // X
f //

��

Y // Cokerf

Coker(Kerf)
f // Ker(Cokerf)

OO

is an isomorphism and it is the unique (epi,mono)-factorization of f , up to isomorphism.

(ii) f is a monomorphism if and only if Kerf = 0 if and only if Coker(Kerf) = X .

(iii) f is an epimorphism if and only if Cokerf = 0 if and only if Ker(Cokerf) = Y .

(iv) f is an isomorphism if and only if Kerf = Cokerf = 0.

There are two essential important concepts through which Homological Algebra inR-Mod is

operated: the first one is compatible image, Im, and coimage, Coim, of morphisms, in order to
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define exact sequences, and the second one is connecting morphisms of homologies in order to

get long exact sequences of Ext-sequences, from a short exact sequence. Now, an exact category

enables us the first one: Let f be a morphism in an exact category C, then

Im f := Ker(Cokerf), Coimf := Coker(Kerf).

By Theorem 1.4.10, Im f ∼= Coimf . In order to get the second, we need our category to have

pullbacks and pushouts. Recall that in a preadditive category with the zero object, the existence

of kernels (cokernels) and finite products (finite coproducts) is equivalent to the existence

of pullbacks (pushouts). We should highlight another advantage of being preadditive: in a

preadditive category C, the coproduct and the product of any finite family of objects of C are the

same (see [HS79, Proposition 40.8], see also [HS79, Theorem 40.13] for the relation between

the preadditivity and admitting products).

Definition 1.4.11. A category C is called additive if it is preadditive and has finite products.

Definition 1.4.12. A category C is called abelian if it is both additive and exact, more concretely,

it satisfies the following:

A1) it is additive,

A2) it admits the zero object,

A2) it has kernels and cokernels,

A3) each monomorphism is a normal monomorphism and each epimorphism is a normal

epimorphism.

The following justifies our claim.

Theorem 1.4.13. [HS79, Theorem 41.9] For any category C, without requiring to admit the

zero object, the following are equivalent:
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(i) C is abelian.

(ii) C has pullbacks, pushouts, the zero object, and each monomorphism is a normal

monomorphism and each epimorphism is a normal epimorphism.

The following well-known facts in an abelian category can be found in [Fre64, Section 2.6].

Proposition 1.4.14. Let C be an abelian category. Then

(i) a morphism in C is an isomorphism if and only if it is both a monomorphism and an

epimorphism.

(ii) The pullback of an epimorphism is an epimorphism.

(iii) The pushout of a monomorphism if a monomorphism.

(iv) Let A ⊆ B ⊆ C in C. Then (C/A)/(B/A) ∼= C/B.

Proposition 1.4.15. [Fre64, Proposition 3.35] Let C be an abelian category. If C has a

generator then it is well-powered.

Definition 1.4.16. Let C be an abelian category. A sequence A
f // B

g // C of morphisms

in C is said to be exact at B if Im f ∼= Kerg. A short exact sequence is an exact sequence of the

form

0→ A→ B → C → 0.

The next is known as ‘Snake Lemma’.

Proposition 1.4.17. [Hel58, Proposition 4.3] In an abelian category C, a commutative diagram

A
f //

a
��

B
g //

b
��

C //

c
��

0

0 // A′
f ′
// B′

g′
// C ′
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with exact rows induces an exact sequence

Kera→ Kerb→ Kerc→ Cokera→ Cokerb→ Cokerc.

Definition 1.4.18. Let F : C → D be a functor between abelian categories. The functor F is

said to be

right exact if F (A) → F (B) → F (C) → 0 is exact for any exact sequence A → B → C →

0,

left exact if 0→ F (A)→ F (B)→ F (C) is exact for any exact sequence 0→ A→ B → C,

exact if F is both right and left exact.

Note that a left or right exact functor between abelian categories is always additive, see

[Fre64, Theorem 3.12 and 3.13]. A standard example Hom : Cop × C → Ab is left exact in

each one of variables. Then an object P in an abelian category C is projective if and only if

HomC(P, -) is exact. The dual statement is for an injective object.

Now we recall Yoneda extension classes. For an abelian category C and objects A,C ∈ C,

Ext1(C,A) denotes the collection of equivalence classes of short exact sequences beginning

with A and ending with C subject to: E ≡ E′ if and only if there is a morphism E→ E′, that is,

0 // A

��

// B //

��

C //

��

0

0 // A // B′ // C // 0.

We sometimes write Ext for Ext1. If E ∈ Ext1(C,A) and if f : A → A′ and g : C ′ → C are

morphisms in C then Eg denotes the short exact sequence obtained by taking pullback of E over

g. Analogously, fE stands for that of pushout of E over f . Then we have a functor

Ext(g, f) : Ext1(C,A)→ Ext1(C ′, A′)



58

which sends a short exact sequence E to (fE)g ≡ f(Eg). If

0→ A→ B → C → 0

is a short exact sequence then for an object X ∈ C the canonical sequences

0→ Hom(C,X)→ Hom(B,X)→ Hom(A,X)

→ Ext1(C,X)→ Ext1(B,X)→ Ext1(A,X)

0→ Hom(X,A)→ Hom(X,B)→ Hom(X,C)

→ Ext1(X,A)→ Ext1(X,B)→ Ext1(X,C)

are exact.

An n-fold exact sequence starting at A and ending at C is an exact sequence of the form

S : 0→ A→ Xn−1 → . . .→ X0 → C → 0.

If T is any m-fold exact sequence starting at C, then Yoneda composite S ◦ T is the exact

sequence composing S and T at C. The congruence relation on n-fold exact sequences is

defined as the weakest reflexive, symmetric and transitive relation in such a way that it includes

the congurence on short exact sequences and (Eβ) ◦ E′ ≡ E ◦ (βE′) whenever the composites

involved are all defined.

In order to define it, we first write an n-fold exact sequence S as the composite of n short

exact sequences Ei in the form

S = En ◦ En−1 ◦ . . . ◦ E1,
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the Ei are unique up to isomorphism. S ≡ S ′, where S ′ is an n-fold exact sequence with the

same start and end, if S ′ can be obtained from S by a finite sequence of replacements of the

following three types

- Replace any one factor Ei by a congruent short exact sequence;

- If two successive factors have the form Eβ ◦ E′, replace them by E ◦ βE′.

- If two successive factors have the form E ◦ βE′, replace them by Eβ ◦ E′.

Then Extn(C,A) stands for the collection of equivalence classes of n-fold exact sequences

beginning with A and ending with C. We refer to [Mac95, Chapter III] for more detail on it.

1.5 Adjoint functors

In this section, we introduce the concept of adjoint functors which are strengthed concepts of

equivalence functors. Recall that in case of equivalence functors, after applying functors, one

expects to return to an object not equally but isomorphicly. The question raises up here: what

would happen if we replace certain morphisms uniquely determined instead of isomorphisms?

This is the starting point of adjointness which comes out in many diverse areas of mathematics.

It provides us a wide class of functors and they are good enough to solve several problems.

Definition 1.5.1. Let F : C → D be a functor and D an object of D.

A reflection of D along F is a pair (CD, αD) where

- CD is an object of C and ηD : D → F (CD) is a morphism of D,

- If C is an object of C and g : D → F (C) is a morphism of D, there exists a unique

morphism f : CD → C in C such that F (f) ◦ ηD = g.
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A coreflection of D along F is a pair (CD, ξD) where

- CD is an object of C and ξD : F (CD)→ D is a morphism of D,

- If C is an object of C and g : F (C)→ D is a morphism of D, there exists a unique

morphism f : C → CD in C such that ξD ◦ F (f) = g.

Completion of metric spaces, abelianization of groups and the order completion of

partially-ordered sets are some of examples of reflections.

Proposition 1.5.2. Let G : C → D and H : A → D be functors. Suppose that for each object

A ∈ A, the reflection of H(A) along G exists and is given, (CH(A), ηH(A)). Then there exists a

unique functor F : A → C such that

- for each A ∈ A, F (A) = CA,

- η := {ηA : H(A)→ G(CA)}A∈A is a natural transformation from H to G ◦ F .

A H //

F ��

D

C

G

??

As a consequence, in case H = idD, there exists a unique functor F : D → C with a natural

transformation η : idD → G ◦ F and F (D) = CD. Furthermore,

(i) F preserves colimits.

(ii) There is a unique functor natural transformation ξ : F ◦G→ idC such that

(G ∗ ξ) ◦ (η ∗G) = idG;

(ξ ∗ F ) ◦ (F ∗ η) = idF .
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Proof. For the first, see [HS79, Lemma 26.9]. For (i) and (ii) see [HS79, Theorem 26.11].

The mission of the functor F is to take an object from C and attach it to the original object in

D along G. It is clear from the definition that this assignment is unique up to isomorphism. In

case of an equivalence G, F does it by an isomorphism. But the uniqueness is good enough for

many situations. The dual statement for coreflections follows by Duality Principle.

Definition 1.5.3. Let F : C → D and G : D → C be functors. (F,G) is called an adjoint pair

provided

• there exist natural transformations η : idC → G ◦ F , called unit of the adjunction, and

ξ : F ◦G→ idD, counit of adjunction,

• G(ξD) ◦ ηG(D) = idG(D)

ξF (C) ◦ F (ηC) = idF (C) .

In this case, F is called a left adjoint of G, G is said to be a right adjoint of F .

Theorem 1.5.4. Let F : C → D and G : D → C be functors. The following are equivalent:

(i) (F,G) is an adjoint pair.

(ii) There exists a natural transformation η : idC → G ◦ F such that for every C ∈ C,

(F (C), ηC) is a reflection of C along G.

(iii) There exists a natural transformation ξ : F ◦ G → idD such that for every D ∈ D,

(G(D), ξD) is a coreflection of D along F .

(iv) There is a natural isomorphism

HomD(F (−),−)→ HomC(−, G(−))

of set-valued bifunctors.
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Proposition 1.5.5. [Bor94, Proposition 3.2.2] If (F,G) is an adjoint pair, then F preserves

colimits and G preserves limits.

Theorem 1.5.6. (Special adjoint functor theorem)[Bor94, Theorem 3.3.4] Consider a functor

G : D → C and suppose the following conditions are satisfied:

- D is complete,

- G preserves small limits,

- D is well-powered,

- D has a cogenerating family.

Then G has a left adjoint functor.

1.6 Grothendieck categories

There are two ways inR-Mod to prove the existence of injective envelopes. One is more peculiar

to R-Mod, see [EJ00, Theorem 3.1.7]. The other one is more categorical and helps to set up

categories with sufficient conditions in order to have enough injectives. In fact, the process is

called Quillen’s small object argument. It is based on the well-ordered direct limit of transfinite

extensions of pushout diagrams. In order to prove that it is an embedding, direct limits need to

be exact. And to control whether the output is injective, it is required to have a sort of result like

Baer’s criterion in R-Mod. Grothendieck proved in [Gro57] that an abelian category with exact

direct limits and a generator has enough injectives.

Definition 1.6.1. Let C be an abelian category. It is called a Grothendieck category if it has a

generator, direct limits and direct limits are exact.
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Note that an abelian category has direct limits if and only if it has coproducts if and only if it

has colimits. So Grothendieck categories are cocomplete. The importance of a generator is that

it guarantees the category to be well-powered, see Proposition 1.4.15.

Proposition 1.6.2. [Ste75, Proposition V.2.9] Let C be a Grothendieck category with a

generator G. An object X is injective in C if and only if every diagram

G′ �
� //

��

G

~~
X

can be completed to a commutative one.

Proposition 1.6.3. Let C be a Grothendieck category. Then every object can be embedded in an

injective object.

Proof. Let X be an object. Then E1(X) is the pushout

⊕
G′≤GG

′(Hom(G′,X)) � � //

��

⊕
G′≤GG

(Hom(G′,X))

��
X �
� // E1(X).

Eα(X) is defined inductively for every ordinal α. Namely, given Eα(X), then Eα+1(X) :=

E1(Eα(X)). And if Eα is defined for every α < β where β is a limit ordinal, then

Eβ := lim−→α<β
Eα. If σ is an ordinal whose cofinality is greater then the cardinal of the set

of subobjects of G, then Eσ(X) is an injective since each subobject G′ is σ-small. And the

canonical morphism X → Eσ(X) is an inclusion because of exact direct limits.

Definition 1.6.4. A subobject A′ ≤ A is called essential if B ∩ A′ 6= 0 for every nonzero

subobject B ≤ A. More generally, a monomorphism f : A′ → A is called essential if Im f is

essential in A.

Definition 1.6.5. An injective envelope of an object A is an essential monomorphism A →

E(A) where E(A) is injective
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All well-known properties on injective envelopes in R-Mod remain true in Grothendieck

categories, as well. For instance, an injective envelope is uniquely determined, see [Ste75,

Proposition 2.3]. An object is injective if and only if its essential extensions are isomorphisms,

see [Ste75, Proposition 2.4]. In the light of these facts and Zorn’s lemma, it is immediate the

existence of injective envelopes in a Grothendieck category.

Proposition 1.6.6. [Ste75, Proposition 2.5] Let C be a Grothendieck category. Then every

object has an injective envelope.

Proposition 1.6.7. A Grothendieck category C admits an injective cogenerator E .

Proof. Let G be a generator for C. Since C is well-powered
⊕

G′≤GG/G
′ is defined. E is an

injective envelope of
⊕

G′≤GG/G
′. It is an injective cogenerator. Indeed, if f : A → B is a

nonzero morphism, then there is a morphism g : G → A such that f ◦ g 6= 0. Since C is an

abelian category, f ◦ g has a factorization and it fits in the following commutative diagram

G
f◦g //

����

B
h

%%
G/Ker(f ◦ g)

) 	

66

� � //
⊕

G′≤GG/G
′ � � // E .

The morphism h exists because E is injective. Since f ◦ g is nonzero, then h ◦ f ◦ g is nonzero,

as well.



CHAPTER TWO

MORE TOPICS ON CATEGORIES

This chapter is devoted to some important classes of categories which are of our special

interest. We recall some well-known facts.

The subject of the first section is locally presentable categories which were firstly introduced

by [GU71]. Roughly, they are categories which have a small set of “compact” objects generating

the category in terms of colimits. This property, which can be found in many categories of

interest, makes the category manageable. Namely, they are precisely reflective subcategories

of SetA, set valued functors from some small-category A, closed under λ-directed colimit

([AR94, 1.46]). Therefore, they are complete, cocomplete, well-powered and with a set of

strong generators. They are also (co)well-powered. The theory enlarges the domain where some

problems in homological algebra can be worked out, such as covering, enveloping ([Kra12]) and

the orthogonal subcategory problem ([AR94, Section 1.C]).

One of the reason which makes the theory so important for us is that it enables a well-behaved

concept of “pure morphisms” for more general categories, which are the λ-colimit completion

of sections just as in R-Mod. In fact, pure short exact sequences in R-Mod are precisely direct

limits of splitting short exact sequences. It will be detailed in Chapter (V). This section is based

on the book [AR94], where locally presentable categories are discussed in detail.

In the second section, we speak of the category of complexes over an abelian category. They

may arise from diverse areas of mathematics. But the reason why they occupy the heart of

many theories is due to efficient uses in algebraic geometry-topology, combinatorial topology,

etc. Complexes constitute, for example, a way to represent topological spaces through Algebra.

For a given topological space there are various complexes associated to it, such as simplicial

complexes, singular complexes, cellular complexes, etc. Besides, they constitute the essence

of (Relative) Homological Algebra since they appear naturally as resolutions of objects. The

65
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category of complexes carries many of properties of its base category. We remind the reader

some terminology and very basic properties on complexes. Some of the treatment on complexes

can be found in [GR99].

Homotopy theory is an area in algebraic topology dealing with classifications of topological

spaces up to homotopy equivalence, which is weaker than homeomorphisms. Roughly, a

homotopy is about how to convert a space to another one continuously in time. It plays

an important role as much as homeomorphisms because many of the homological tools

are invariant under homotopy equivalence such as homology and homotopy groups: If two

continuous maps of topological spaces are homotopic, their induced maps of singular homology

groups are the same. Since topological spaces correspond to complexes in Algebra, there is a

“homotopy” notion for chain maps of complexes. In fact, there are three different notions of

homotopy: that of continuous maps of topological spaces, of simplical maps of simplical sets

and that of morphisms of complexes. The implication goes in order. The connection between

Homological Algebra and Algebraic Topology is treated very well in [GM03]. In addition,

homotopy category is also a bridge between a category of complexes and its derived category.

It is unlikely an abelian category. But Verdier in [Ver96] proved that it has a ‘triangle structure’

which allows to get a long exact sequence of homologies. In the third section, we recall some

necessary ingredients for homotopy category.

The subject of the last section is to remember the equivalence between the category of

quasi-coherent sheaves and some certain module representations of a quiver, which was pointed

out in [EE05].

2.1 Presentable categories

We first start by giving the definition of λ-presentable objects in any category, which was

introduced by [GU71]
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Definition 2.1.1. Let λ be a regular cardinal. A set I with a preorder ≤ is called λ-directed if

for any subset S with cardinality less than λ, there is an element k ∈ I with i ≤ k for each

i ∈ S.

A λ-directed diagram in a category C is a system of objects which is indexed over a

λ-directed set, more concretely, a functor F : I → C where I is a λ-directed set. Regarding to

that, a colimit of a λ-directed diagram is called λ-directed colimit in C.

Definition 2.1.2. Let X be an object in a category C and λ be a regular cardinal. It is said to be

λ-presentable if HomC(X,−) preserves λ-directed colimits. An object is called presentable if

it is λ-presentable for some regular cardinal λ. In case λ = ℵ0, it is called finitely presentable.

Proposition 2.1.3. [AR94, Proposition 1.16] Let F : D → C be a functor where D is λ-small

and for each D ∈ D, F (D) is λ-presentable in C for some regular cardinal λ. Then colimF , if

exists, is λ-presentable in C, as well.

Definition 2.1.4. A category C is called locally λ-presentable, where λ is a regular cardinal,

provided that

P1) it is cocomplete,

P2) it has a set of λ-presentable objects such that every object is a λ-directed colimit of objects

from A.

A category is called locally presentable if it is locally λ-presentable for some regular cardinal

λ. In case λ = ℵ0, it is said to be locally finitely presentable.

Let us denote by Cλ the class of all λ-presentable objects in a category C. If C is locally

λ-presentable, then there is a set in Cλ in such a way that every λ-presentable object is a direct

summand of an object of it. This implies that Cλ is skeletally small, that is, it has a set of
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representatives, PresλC. It is a small full subcategory of C. The next proposition shows that

the definition of locally presentable category given above by [AR94] is the same as the original

one, that of [GU71].

Proposition 2.1.5. [AR94, Theorem 1.20] A category is locally λ-presentable if and only if it is

cocomplete and has a strong generator formed by λ-presentable objects.

Let us consider the Yoneda functor for a locally λ-presentable category C,

Y : C → Fun((PresλC)op,Set),

Y (X) := HomC(−, X)|PresλC , which is fully faithful and preserves λ-colimits. Since C

is cocomplete, it has a right adjoint, hence, it is equivalent to a reflective subcategory of

Fun((PresλC)op,Set). As a matter of fact, locally presentable categories are precisely full,

reflective subcategories of the category of set-valued functors over a small category. In addition

to they are closed under λ-directed colimits, see [AR94, Theorem 1.46]. This implies that they

are complete, as well.

Proposition 2.1.6. [AR94, Corollary 1.60,] Let C be a locally λ-presentable category. Then the

following holds:

(i) The class of all monomorphisms are closed under λ-directed colimits, that is, the

λ-directed colimit functor is exact.

(ii) λ-directed unions are λ-directed colimits.

As a consequence of the well-known Gabriel-Popescu Theorem, [GP64], locally presentable

categories generate a wider domain involving Grothendieck categories.

Proposition 2.1.7. Any Grothendieck category is locally presentable.
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Recall that in a Grothendieck category an object X is said to be λ-generated if Hom(X,−)

preserves all λ-directed limits with all morphisms in the direct system being monomorphisms.

Now let κ ≥ λ be regular cardinals. In a locally λ-presentable category, κ-presentable objects

are precisely κ-small colimit of λ-presentable objects, see [AR94, Remark 1.30]. The following

result gives a characterization of κ-presentable objects in a Grothendieck category in terms of

κ-generated objects just as in R-Mod.

Proposition 2.1.8. [Sto13a, Lemma A.2] Let C be a Grothendieck category which is

λ-presentable for a regular cardinal λ. The following are equivalent for an object X ∈ C

and a regular cardinal κ ≥ λ:

(i) X is κ-presentable.

(ii) X is κ-generated and whenever 0 → K → E → X → 0 is a short exact sequence in C

such that E is κ-generated, K is also κ-generated.

The other equivalent definition of a finitely presentable object in a module category R-Mod

is to be a quotient of a morphism between finitely generated free modules. The following states

it for sufficiently big infinite regular cardinals in Grothendieck categories, too.

Proposition 2.1.9. [GU71, 7.6 and 9.3] Let C be a Grothendieck category such that C has a

generating set S consisting of λ-presentable objects for some regular cardinal λ. Let X be an

object of C and κ an infinite regular cardinal with κ ≥ λ. Then

(i) X is κ-generated if and only if there exists an exact sequence

⊕
i∈I

Si → X → 0

with |I| < κ and Si ∈ S for all i ∈ I .
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(ii) X is κ-presentable if and only if there exists an exact sequence

⊕
j∈J

Sj →
⊕
i∈I

Si → X → 0

with |J | < κ, |I| < κ and Si, Sj ∈ S for all i ∈ I and j ∈ J .

2.2 Category of complexes

Definition 2.2.1. Let C be an abelian category. A chain complex A is a chain of morphisms,

which are called differentials, {dAn : An → An−1}n∈Z in C such that dAn+1 ◦ dAn = 0 for every

n ∈ Z. It is denoted as

. . . // An+1

dAn+1 // An
dAn // An−1 // . . . .

Definition 2.2.2. For any given complexes A and B, a (chain) morphism f : A → B is a

Z-indexed set of morphisms {fn : An → Bn}n∈Z such that dBn ◦ fn = fn−1 ◦ dAn , that is, the

following diagram is commutative

. . . // An+1

dAn+1 //

fn+1

��

An
dAn //

fn
��

An−1 //

fn−1

��

. . .

. . . // Bn+1
dBn+1

// Bn
dBn

// Bn−1 // . . .

.

As a matter of fact, a category of complexes can be defined for any category, subject to

dn ◦ dn+1 = 0. But here we are interested in the abelian case in order to deal with exact

sequences easily.

To avoid any commotion of notations, we get rid of using superscripts on differential maps,

we write dn instead of dAn for any complexA. It is easy to observe that the class of all complexes
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over C constitutes a preadditive category, denoted by C(C), with chain morphisms and the

canonical composition. The nth cycle, Zn(A), of a complex A is Kerdn. Similarly, the nth

boundary, Bn(A), of A is Im dn+1. The nth homology, Hn(A), of A is Zn(A)/Bn(A). A

complex A is said to be acyclic (or exact) if Hn(A) = 0 for all n ∈ Z, i.e.,

An+1
dn+1 // An

dn // An−1

is exact for each n ∈ Z. We denote the class of acyclic complexes by Acic. A classical diagram

chasing shows that Hn : C(C) → C is an additive functor. There are two canonical ways to

embed a category C in its category of complexes C(C) which are very useful for the theory. The

first one is

Sn : C −→ C(C),

X  . . .→ 0→ X → 0→ . . . ,

X

f
��
Y

 . . . // 0 //

��

X //

f
��

0 //

��

. . .

. . . // 0 // Y // 0 // . . .

where X and Y are located at nth place. For any complex A ∈ C(C), we have natural

isomorphisms:

- HomC(C)(S
n(X), A) ∼= HomC(X,Zn(A)),

- HomC(C)(A, S
n(X)) ∼= HomC(Cokerdn+1, X).

This means that (Sn, Zn) and (Cokerdn+1, S
n) are adjoint pairs. So Sn preserves both any

colimits and limits. The other one is

Dn : C −→ C(C)

X  . . . // 0 // X id // X // 0 // . . . ,
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X

f
��
Y

 . . . // 0 //

��

X
id //

f
��

X //

f
��

0 //

��

. . .

. . . // 0 // Y
id // Y // 0 // . . .

where X and Y are placed at nth and n− 1th place. Again, we have

- HomC(C)(D
n(X), A) ∼= HomC(X,An),

- HomC(C)(A,D
n+1(X)) ∼= HomC(An, X).

These imply that (Dn, pn) and (pn, D
n+1) are adjoint pairs where pn is the canonical functor,

pn(A) := An. For any object X ∈ C, there is a canonical exact sequence of complexes

0→ Sn−1(X)→ Dn(X)→ Sn(X)→ 0.

As an application of these facts, ifG is a generator for a category C, then the family {Dn(G)}n∈Z

is a generating set for the category of complexes C(C) on C.

Proposition 2.2.3. Let C be an abelian category with a generator G and A be a complex in

C(C). If the functor HomC(C)(−, A) leaves each short exact sequence, n ∈ Z,

0→ Sn−1(G)→ Dn(G)→ Sn(G)→ 0

exact, then A is exact.

Proof. By assumption, we have an exact sequence

0→ HomC(G,Zn(A))→ HomC(G,An)→ HomC(G,Zn−1(A))→ 0

for each n ∈ Z, it means

0→ Zn(A)→ An → Zn−1(A)→ 0
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is exact since G is a generator of C.

Consider a functor F : I → C. Then we have functors S0 ◦ F : I → C(C) and p0 ◦ S0 ◦ F :

I → C, where S0 and p0 preserve any limits and colimits and p0 ◦ S0 = id. So colimit

(limit) of F exists in C if and only if colimit (limit) of S0 ◦ F exists in C(C). Conversely,

let F : I → C(C) be a functor. Then this generates a family of functors {Fn : I → C}n∈Z,

Fn = pn ◦F . There is a canonical natural transformation between Fn and Fn−1 for each n ∈ Z,

i.e., dn : Fn(i)→ Fn−1(i). Firstly, we observe that if limF exists, then lim(pn◦F ) ∼= pn(limF )

exists in C for each n ∈ C. For the contrary, if limFn and limFn−1 exist in C, then there is a

unique morphism limFn → limFn−1 such that the diagram

limFn //

��

limFn−1

��
Fn(i)

dn
// Fn−1(i)

is commutative for each i ∈ I . Because morphisms limFn → limFn−1, n ∈ Z, are determined

uniquely and Fn−1(i)→ Fn(i)→ Fn+1(i) = 0 for each i ∈ I , limFn+1 → limFn → limFn−1

is the zero morphism. We denote (limFn)n for the complex obtained by taking degreewise limit

limFn, n ∈ Z, whenever each one exists. By universal property, we have the following:

Proposition 2.2.4. Let F : I → C(C) be a functor. Then limF (colimF ) of F exists in C(C) if

and only if degreewise limits lim(pn ◦ F ) (colimits colim(pn ◦ F )), ∀n ∈ Z, exist in C.

As a consequence of Proposition 2.2.4, each of equalizers, kernels, pullbacks, limits and their

duals in C(C) is obtained componentwise in C. So 0 → A → B → C → 0 is a short exact

sequence in C(C) if and only if

0→ An → Bn → Cn → 0

is a short exact sequence in C for each n ∈ Z.
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Proposition 2.2.5. Let C be a category. Then

(i) C is abelian if and only if C(C) is abelian.

(ii) C is a Grothendieck category if and only if C(C) is a Grothendieck category.

If C is an abelian category, then two times application of Snake Lemma give a long exact

sequence of homologies of complexes. Indeed, for a short exact sequence 0 → A′ → A →

A′′ → 0 of complexes, there is an exact complex

0→ Zn(A′)→ Zn(A)→ Zn(A′′)→ A′n−1/Bn(A′)

→ An−1/Bn(A)→ A′′n−1/Bn(A′′)→ 0

for each n ∈ Z. Again, applying Snake Lemma for the following commutative diagram

A′n/Bn+1(A
′) //

��

An/Bn+1(A) //

��

A′′n/Bn+1(A
′′)

��

// 0

0 // Zn−1(A
′) // Zn−1(A) // Zn−1(A

′′)

we get the following long exact sequence of homologies

. . .→ Hn(B)→ Hn(C)→ Hn−1(A)→ Hn−1(B)→ . . . .

Proposition 2.2.6. Let C be an abelian category. For any object C ∈ C and complex A ∈ C(C)

(i) ExtC(C,An) ∼= ExtC(C)(D
n(C), A).

(ii) ExtC(An, C) ∼= ExtC(C)(A,D
n+1(C)).

(iii) ExtC(C,Zn(A)) ↪→ ExtC(C)(S
n(C), A).

(iv) ExtC(An/Bn(A), C) ↪→ ExtC(C)(A, S
n(C)).
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Proof. See [Gill04, Lemma 3.1] for (i) and (ii). See [Gill08, Lemma 4.2]for (iii) and (iv).

The following is easy to observe.

Proposition 2.2.7. Let C be a category and A be a complex in C(C). Then we have:

(i) A is a finitely presentable complex if and only if the set {i ∈ Z : Ai 6= 0} is finite (i. e. a

bounded complex) and An is finitely presentable in C, for each n ∈ Z.

(ii) Let λ > ℵ0 be a regular cardinal. Then A is a λ-presentable complex if and only if An is

λ-presentable in C for each n ∈ Z.

A complex A is said to be bounded below (above) if there exists k ∈ Z such that An = 0 for

all n < k (n > k). In case it is bounded below and above, it is called bounded. We will denote

by C+(C),C−(C),Cb(C) the subcategories consisting of bounded below, bounded above and

bounded complexes, respectively. Now we introduce the truncation and suspension functors

which are additive functors mapping a complex to a complex in C+(C), C−(C) and C(C). For

any complex A ∈ C(C)

- τ≥n : C(C)→ C+(C):

τ≥n(A) : . . .→ An+2 → An+1 → Ker(dAn )→ 0→ . . .

- τ≤n : C(C)→ C−(C):

τ≤n(A) : . . .→ 0→ 0→ Coker(dAn+1)→ An−1 → An−2 → . . . .

- i-suspension functor for any i ∈ Z, [i] : C(C)→ C(C):

A[i], is the complex given by A[i]n := An−i and dA[i]n := (−1)idAn−i for any n ∈ Z.
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For any complex A and m ∈ Z,

Hm(τ≥n) =

 Hm(A) if m ≥ n

0 if m < n

Hm(τ≤n) =

 Hm(A) if m ≤ n

0 if m > n

Hm(A[i]) = Hm−i(A).

There is an internal Hom-functor in C(C), HomC(C)(−,−) : C(C)op ×C(C)→ C(C). For

given complexes A and B,Hom(A,B) is a complex whose nth module is

Hom(A,B)n :=
∏
i∈Z

Hom(Ai, Bi−n)

with differential dn : Hom(A,B)n → Hom(A,B)n−1, given by

dn((fi)i) = (dBi−n ◦ fi − (−1)nfi−1 ◦ dAi )i.

Then the nth cycle Zn(Hom(A,B)) is the set of morphisms HomC(C)(A,B[n]). Suppose that

f := (fi)i is in the Bn(Hom(A,B)). Then there is a morphism (gi)i ∈ Hom(A,B)n+1 such

that di−n−1 ◦ gi − (−1)n+1gi−1 ◦ di = fi. We will see in the next section that it means f ∼ 0,

that is, a chain morphism f : A → B[n] and homotopic to zero. As a result, nth homology of

Hom(A,B), Hn(Hom(A,B)), is HomC(C)(A,B[n])/∼, that is, HomK(C)(A,B[n]).

2.3 Homotopy category of complexes

Definition 2.3.1. Let C be an additive category and f, g : A → B be two morphisms in C(C).

It is said that f and g are homotopic if there are morphisms si : Ai → Bi+1 for each i ∈ Z, such
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that fi − gi = dBi+1 ◦ si + si−1 ◦ dAi . It is denoted by f ∼ g.

The relation∼ of being homotopic is an equivalence relation on the class of morphisms. It is

well known that homotopy relation is closed under compositions, so it is a congruence on C(C).

Then the quotient category (see Definition 1.1.3) of C(C) with respect to homotopy relation is

called the homotopy category of C and denoted by K(C) := C(C)/∼. It is also well-known that

K(C) is an (pre)-additive category whenever C is (pre)-additive.

Definition 2.3.2. Let f : A→ B be a morphism in C(C). Then it is called a

homotopy equivalence if there is a morphism g : B → A such that g◦f ∼ idA and f◦g ∼ idB.

quasi-isomorphism if the corresponding homology morphism Hn(f) : Hn(A) → Hn(B) is

an isomorphism for any n ∈ Z.

It is clear from the definition that homotopy equivalences are precisely isomorphisms in

K(C). The importance of homotopy equivalence comes from the fact that they are preserved

under any additive functor from C. Indeed, for any two homotopic morphisms f ∼ g, fn−gn =

dn+1 ◦ sn + sn−1 ◦ dn, and for any additive functor F : C → D we have F (fn) − F (gn) =

F (dn+1) ◦ F (sn) + F (sn−1) ◦ F (dn). As an application, homotopic morphisms give rise to the

same morphisms on homologies, that is, if f ∼ g then Hn(f) = Hn(g) for each n ∈ Z. So any

homotopy equivalence is a quasi-isomorphism, as well, and Hn is a functor from K(C). But the

converse is not true, in general, a quasi-isomorphisms need not be a homotopy equivalence. For

instance, the zero morphism A → 0 from an exact complex A is always a quasi-isomorphism

but it is a homotopy equivalence when it is contractible.

Definition 2.3.3. A complex A is said to be contractible if idA ∼ 0.

The following is a standard consequence.
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Proposition 2.3.4. Let C be an abelian category and A be a complex in C(C). Then the

following are equivalent:

(i) A is contractible.

(ii) A is isomorphic to the zero complex 0 in K(C)

(iii) A is an exact complex and

0→ Zn(A)→ An → Zn−1(A)→ 0

splits for all n ∈ Z.

(iv) A is isomorphic to a direct sum of complexes of the formDn(X) whereX ∈ C and n ∈ Z.

The homotopy category K(C) is unlikely to be abelian even though C is an abelian category.

The notions of monomorphisms and epimorphisms are not inherited by C(C), for example, a

unit disc is homotopic to a point, that is, it is an isomorphism in the homotopy category but not

even a monomorphism in the category of topological spaces or the inclusion of unit circle into

unit disc is a homotopy equivalence, as well. There are few exact sequences in K(C), in fact,

they are precisely split exact sequences in K(C), by the result of [Ver96].

In [Ver96], Verdier came up with a class of sequences in K(C), called distinguished triangles,

which are nice enough to have a long exact sequences of homologies. Each morphism [f ] : A→

B in K(C) appears as a component in a distinguished triangle

C[−1] // A
[f ] // B // C

such that the left morphism and the right morphism act as kernel and cokernel of [f ],

respectively. Categories with a class of sequences which satisfies some certain conditions as

distinguished triangles do in K(C) are called triangulated categories, see for example [Nee01].
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To get back to the issue at hand, the notion of mapping cone of a morphism in C(C) helps to

construct distinguished triangles in K(C). The mapping cone, c(f), of f : A→ B, a morphism

in C(C), is a complex whose nth object is

c(f)n := Bn ⊕ An−1

with differential

dn :=

 dBn 0

fn−1 −dAn−1

 : Bn ⊕ An−1 → Bn−1 ⊕ An−2.

There is also an exact sequence of complexes

0→ B → c(f)→ A[1]→ 0

which is a degreewise splitting exact sequence. Conversely, consider an exact sequence of

complexes

0→ B → C → A→ 0

which splits in each degree. Then for each n ∈ Z, the short exact sequence 0 → Bn → Cn →

An → 0 is isomorphic to the canonical short exact sequence

0→ Bn → Bn ⊕ An → An → 0.

Therefore C is of the form

. . . // Bn+1 ⊕ An+1
dn+1 // Bn ⊕ An

dn // Bn−1 ⊕ An−1
dn−1 // . . . .
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Commutativity of the diagram implies that the differential dn of C must be of the form

 dBn 0

αn dAn


where αn : An → Bn−1, for each n ∈ Z. Since dn ◦ dn−1 = 0, we get

dBn ◦ αn−1 + αn ◦ dAn−1 = 0

which leads to a morphism α := (αn) : A[−1] → B. So c(α) ∼= C. This means that an

exact sequence 0 → A → C → B → 0 which splits degreewise is isomorphic to a short exact

sequence associated with a mapping cone

0→ A→ c(α)→ B → 0. (2.3.1)

We will see that α is unique up to homotopy.

The followings are well-known properties of the mapping cone.

Proposition 2.3.5. Let C be an abelian category and f : A→ B be a morphism in C(C). Then

(i) c(idA) is contractible for each complex A ∈ C(C).

(ii) f in C(C) is a quasi-isomorphism if and only if c(f) is exact.

(iii) If f ∼ g then c(f) ∼= c(g).

(iv) f ∼ 0 if and only if

0→ B → c(f)→ A[1]→ 0

is split exact in C(C).

(v)

0 // B ι // c(f) // A[1] // 0
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is split exact if and only if [ι] is a section in K(C).

Proof. (i) Take

sn :=

 0 id

0 0

 : An ⊕ An+1 → An−1 ⊕ An

for each n ∈ Z.

(ii) It follows from the associated exact sequence

0→ B → c(f)→ A[1]→ 0

of complexes and long exact sequence of homologies.

(iii) Suppose that f ∼ g : A → B with homotopy morphisms sn : An → Bn+1 for each

n ∈ Z. Then  id 0

sn−1 id

 : Bn ⊕ An−1 → Bn ⊕ An−1

gives rise to an isomorphism of mapping cones c(f) and c(g).

(iv) Suppose that f ∼ 0. By (iii), 0 → B → c(f) → A[1] → 0 is isomorphic to 0 → B →

c(0)→ A[1]→ 0. Then the family of pointwise canonical projections {πnBn ⊕An−1 →

Bn}n∈Z is a chain morphism from c(0) to B.

Conversely, suppose that it is split exact. Let t : B[1] → c(f) be a section. Then each tn

is of the form (un−1, id) : An−1 → Bn ⊕ An−1. Since t is a morphism of complexes, by

the commutativity of each diagram,

dn ◦ un−1 + fn−1 = −un−2 ◦ dn−1.

Then {sn : −un}n∈Z is a family of homotopy maps between f and 0.
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(v) Let r := {

 αn

tn−1

}n∈Z be a morphism from c(f) to B, where αn : Bn → Bn and

tn−1 : An−1 → Bn, in such a way that [r] ◦ [ι] ∼ idB. Let {sn : Bn → Bn+1}n∈Z be a

homotopy between idB and r ◦ ι. This implies that id−αn−1 = sn−2 ◦ dBn−1 + dBn ◦ sn−1

for each n ∈ Z. Then id

tn−1 + sn−1 ◦ fn−1

 : Bn ⊕ An−1 → Bn

gives rise to a chain map c(f)→ B which is clearly a retraction of ι.

Proposition 2.3.6. Let C be an abelian category. A complex P is projective (injective) in C(C)

if and only if it is a contractible complex of projectives (injectives).

More generally, a complex A has projective dimension≤ n if and only if A is exact and each

An and Zn(A) has projective dimension ≤ n.

Proof. Sufficiency is clear by Proposition 2.3.4-(iv) and the fact that Dn(X) is projective in

C(C) if nd only if X is projective in C. Now suppose that P is a projective complex. Then the

short exact sequence

0→ P [−1]→ c(id)→ P → 0

splits. By Proposition 2.3.5-(iv), id ∼ 0, that is, P is contractible. Besides, (pn, D
n+1) is an

adjoint pair where Dn+1 is exact. So Pn is projective in C for each n ∈ Z.

The other assertion is clear because exactness of complexes has the two-out-three property

in a short exact sequence of complexes.

Recall the internal hom, Hom(−,−), of complexes from the previous section. Its nth
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homology is HomK(C)(A,B[n]). Then the following is immediate.

Corollary 2.3.7. For A,B ∈ C(C), Hom(A,B) is an exact complex if and only if

HomK(C)(A,B[n]) = 0 for all n ∈ Z.

For given complexes A,B, Extdw(A,B) is the subgroup of Ext(A,B) consisting of

degreewise split short exact sequences 0→ B → X → A→ 0.

Proposition 2.3.8. For given complexes A,B ∈ C(C), there is an isomorphism

HomK(C)(A,B)→ Extdw(A[1], B).

Proof. Let ϕ : HomC(C)(A,B) → Extdw(A[1], B) be a morphism which sends a morphism

f : A→ B to the canonical exact sequence

0→ B → c(f)→ A[1]→ 0.

It is an epimorphism because of the argument discussed in 2.3.1. By Proposition 2.3.5-(iv), its

kernel, Kerϕ, is the set of morphisms f : A→ B which are homotopic to zero. Then it induces

an isomorphism

ϕ : HomK(C)(A,B)→ Extdw(A[1], B).

2.4 Qcoh(X) as a category of representations

In this section we focus on the category of quasi-coherent sheaves and its equivalent category

in terms of certain quiver representations. Firstly, we begin summarizing terminology. Most of

them can be found in [GW10].

Let (X,OX) be a scheme. We denote byOX-PreMod,OX-Mod and Qcoh(X) the categories



84

of OX-premodules, OX-modules and quasi-coherent sheaves over X , respectively. The

notations PSh(X) and Sh(X) stand for the categories of presheaves and sheaves over X ,

respectively.

The category OX-PreMod is a locally finitely presentable category with enough projectives,

see for example [PR04, Corollary 2.15]. The categories OX-Mod and Qcoh(X) are known to

be Grothendieck. For when OX-Mod is locally finitely presentable, see [PR04, Section 5].

For a presheaf F over X , remember that the stalk of F at x ∈ X consists of the equivalence

classes of the disjoint union of F(U), where U runs through all open neighborhoods of x,

Fx =
( ⊔
x∈U

F(U)
)
/ ∼

such that a ∼ b for a ∈ F(U) and b ∈ F(V ) if and only if there exists an open neighborhood

W ⊆ U ∩ V such that a|W = b|W . So, an element of Fx is represented by sx :=< U, s > for

some open neighborhood U of x such that s ∈ F(U). Actually, sx is the image of the section

s ∈ F(U) in the stalk Fx.

A scheme is called quasi-compact if it is quasi-compact as a topological space, that is, each

of its open covers has a finite subcover. Therefore, X = SpecR is a quasi-compact topological

space. It is not compact because SpecR is not Hausdorff in general.

Recall that for a morphism of schemes f : X → Y , if F is a presheaf on X , then the direct

image f∗(F) is a presheaf defined on an open subset U of Y as f∗(F)(U) := F(f−1(U)). If

F is either a sheaf or an OX-module then so is f∗(F). But in general the direct image functor

f∗ doesn’t preserve quasi-coherence. Let x ∈ X and M be an OX,x-module. The skyscraper
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sheaf of M is the direct image sheaf ι∗,x(M) under the inclusion ιx : {x} ↪→ X , precisely,

ι∗,x(M)(U) =


M, if x ∈ U

0, otherwise

If G is a presheaf on X , then the presheaf f+(G) is defined on an open subset U as

lim−→
f(U)⊆V
V⊆Y

G(V )

where each V appeared in the index is open.

The sheafification functor S : Sh → PSh, which is the left adjoint of the inclusion ι :

PSh ↪→ Sh, preserves the property of being OX-module and stalks due to its construction.

For a morphism f : X → Y of schemes, if G is a sheaf on Y , then f+(G) may not be a sheaf.

So we consider its sheafification denoted by f−1G. It is called the inverse image of G under f .

Then (f−1G)x ∼= Gf(x). If X is an open subset of Y , then f−1G ∼= G |X .

If G ∈ OX-Mod, then f−1(G) is a f−1(OY )-module. But the map OY → f∗OX corresponds

to a map f−1OY → OX by the adjoint property. So in order to convert it into an OX-module, it

is tensorized by OX ,

f ∗(G) := f−1(G)⊗f−1(OX) OX .

Then we have a functor f ∗ : OY -Mod→ OX-Mod whose stalk at x ∈ X is f ∗(G)x ∼= Gx⊗OX,x

OX,x. Note that the inverse image functor preserves tensor product.

Definition 2.4.1. Let X be a scheme. Then it is said to be

reduced if for every open subset U ⊆ X , OX(U) has no nilpotent elements.
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irreducible if for each decomposition X = X1 ∪ X2 with X1, X2 closed subsets, one has

X1 = X or X2 = X .

integral if for any open subset U ⊆ X , the ring OX(U) is an integral domain.

locally Noetherian If X can be covered by open affine subsets SpecAi, where each Ai is a

Noetherian ring.

Noetherian if it is both quasi-compact and locally Noetherian.

quasi-separated if the intersection of any two quasi-compact open subsets (or even open

affines) is quasi-compact.

semi-separated if the intersection of two affine open subsets is again affine.

concentrated if it is both quasi-compact and quasi-separated.

Note that all types of schemes given in the definition have a local property, that is, for

example, a scheme is locally Noetherian if and only if for every affine open subset SpecA

of X , A is a Noetherian ring. And a scheme is integral if and only if it is quasi-compact and

irreducible.

Let F,G be OX-modules. The tensor product F ⊗OX G is defined as the sheafification of the

presheaf U → F(U)⊗OX(U) G(U), for each open subset U ⊆ X .

There is also an internal hom-functor inOX-Mod, Hom(-, -). The image Hom(F,G)(U) on

an open subset U ⊆ X is Hom(F|U ,G|U). For all x ∈ X , there is always a map

Hom(F,G)x → HomOX,x(Fx,Gx).

But in general, it is neither injective nor surjective.
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For any OX-modules F, G and H, there are canonical isomorphisms

Hom(F,Hom(G,H)) ∼= Hom(F ⊗OX G,H),

Hom(F,Hom(G,H)) ∼= Hom(F ⊗OX G,H),

Hom(OX ,F) ∼= F(X),

Hom(OX ,F) ∼= F.

That is, the category OX-Mod carries a closed symmetric monoidal structure, see Section 5.2.

The direct image functor doesn’t commute neither with internal hom Hom nor tensor

product, that is, the canonical functors

f∗Hom(F,G)→ Hom(f∗F, f∗G),

f∗(F)⊗ f ∗(G)→ f∗(F ⊗ G)

aren’t always monomorphisms nor epimorphisms. Besides, it doesn’t preserve quasi-coherence

unless X is Noetherian or f is quasi-compact and quasi-separated morphism.

Since Qcoh(X) and OX-Mod are Grothendieck categories and the inclusion functor ι :

OX-Mod ↪→ Qcoh(X) preserves limits and colimits, by the special adjoint functor theorem,

Theorem 1.5.6, it has a right adjoint, C : Qcoh(X) → OX-Mod known as the coherator

functor. It redounds a closed symmetric monoidal structure on Qcoh(X) because the tensor

product of two quasi-coherent sheaves is quasi-coherent. The internal hom on Qcoh(X) is

defined as C(Hom(-, -)).

Recall that a quasi-coherent sheaf F is said to be of type κ, for κ an infinite cardinal, if each

F(U) has fewer than κ generators over OX(U) for each affine open subset U ⊆ X . Let κ be

an infinite regular cardinal such that κ >| OX(U) | for each affine open subset U ⊆ X and
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κ >| H |, where H := {resUV | for affine subsets V ⊆ U ⊆ X}.

On the other hand, given F ∈ Qcoh(X), the cardinality of F is

| F |:= sup{| F(U) |: U ∈ U},

(here U stands for the set of all affine open subsets of X). Note that if κ is as before, then

| F |< κ if and only if F is of type κ.

Now we speak of the equivalent category of Qcoh(X) given in [EE05, Section 2]. Note that

by [Hart77, Proposition (2.5.2-(b,e))], an OX-module F for some scheme X is quasi-coherent

if and only if it satisfies the following conditions on the affine open subsets:

(i) Let V ⊆ U be two affine open subsets of the scheme X . Then we have an isomorphism

of OX(V )-modules given by

OX(V )⊗OX(U) F(U)
id⊗fUV−−−−→ OX(V )⊗OX(V ) F(V ) ∼= F(U)

where fUV : F(U)→ F(V ) is the restriction map of the OX-module F .

(ii) Compatibility condition: If W ⊆ V ⊆ U for affine open subsets W,V, U , then the

composition

F(U)
fUV−−→ F(V )

fVW−→ F(W )

gives F(U)
fUW−→ F(W ).

Let B be a base of the scheme X containing affine open subsets such thatOX is B-sheaf (see

[EH00, Proposition I.12]). Now, define a quiver Q having the family B as the set of vertices,

and an edge between two affine open subsets U, V ∈ B as the only one arrow U → V provided

that V ( U . So the quiver comes equipped with the relation U → V → W equals to U → W

whenever defined. Fix this quiver. Take the representation R as R(U) := OX(U) for each
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U ∈ B and the restriction map ρUV : OX(U)→ OX(V ) for the edge U → V .

An R-module M is given by an R(v)-module M(v), for each vertex v ∈ V , and an

R(v)-linear morphism

M(a) : M(v) −→M(w)

for each edge a : v → w ∈ E. We assume that M satisfies also the previous compatibility

condition. Since R(a) is a ring homomorphism for an edge a : v → w, the R(w)-module

M(w) can be thought as an R(v)-module.

An R-module M is quasi-coherent if for each edge a : v → w, the morphism

idR(w)⊗R(v)M(a) : R(w)⊗R(v) M(v)→ R(w)⊗R(w) M(w)

is an R(w)-module isomorphism. The category of quasi-coherent R-modules is denoted by

RQco-Mod.

Then the canonical functor

Φ : Qcoh(X) 7−→ RQco-Mod,

is an equivalence by [EH00, Proposition I.12] and [Hart77, Proposition (2.5.2-(b,e))]. This

equivalence enables us to conceive the category of quasi-coherent sheaves better and to work

with them easier. So we deal with RQco-Mod rather than Qcoh(X) when we have some concepts

with local properties .

Let us make the equivalence concrete by an example.

Example 2.4.2. Let X = PnR be a projective scheme where n ∈ N. Then again take a base

containing affine open subsets D+(xi) for all i = 0, . . . n, and all possible intersections. In this
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case, our base contains basic open subsets of this form

D+(
∏
i∈v

xi),

where v ⊆ {0, 1, . . . , n}.

So, the vertices of our quiver are all subsets of {0, 1, . . . , n} and we have only one edge

v → w for each v ⊆ w ⊆ {0, 1, . . . , n} since D+(
∏

i∈w xi) ⊆ D+(
∏

i∈v xi). Its representation

has

ORnR(D(
∏
i∈v

xi)) = R[x0, . . . , xn](∏i∈v xi)

on each vertex v, it is isomorphic to the polynomial ring on the ring R with the variables
xj
xi

where j = 0, . . . , n and i ∈ v. We will denote this polynomial ring by R[v]. Then the

representation R with respect to this quiver has vertex R(v) = R[v] and edges R[v] ↪→ R[w] as

long as v ⊆ w.

Finally, an R-module M is quasi-coherent if and only if

S−1vwfvw : S−1vwM(v) −→ S−1vwM(w) = M(w)

is an isomorphism as R[w]-modules for each fvw : M(v) → M(w) where Svw is the

multiplicative group generated by the set {xj/xi| j ∈ w \ v, i ∈ v} ∪ {1} and v ⊂ w.



CHAPTER THREE

APPROXIMATIONS AND RELATIVE HOMOLOGICAL ALGEBRA

It has been always a natural question in any branch of mathematics to find properly a

replacement of an object by an object of some special class. Depending on the context,

‘properly’ means that the replaced object respects certain operations and behaves as the original

object. They are used to simplfy some arguments or to reduce problems to easier cases. As we

will see later, for example, cofibrant and fibrant replacements in a model category are useful

to control morphisms in the localization of a category, or a deleted projective resolution is

a complex preserving quasi-isomorphisms, so the original object is represented by its deleted

projective resolution in the derived category. In this chapter, we are interested in approximations

in Homological Algebra. We continue getting to know must-have components of Homological

Algebra.

The aim of the first section is to present the main concepts of Relative Homological

Algebra, (pre)covers and (pre)envelopes. They are the concepts that allow us to approximate

an object. All the well-known envelopes and covers in R-Mod such as injective envelopes

by [EC53], projective covers by [Bas60] and torsion-free coverings by [Eno63] were defined

and investigated separately. Enochs in [Eno81] brings them together with the notions of

(pre)covers and (pre)envelopes. And in the same paper, he came up with the problem of

the existence of flat covers, which is known as the Flat Cover Conjecture. These notions

are known in Representation theory as (minimal) right F-approximations and (minimal) left

F-approximations due to [AS80]. And preenvelopes are the same as weak-reflections in [AR94,

Definition 4.5]. The good part of these concepts is that they are quite categorical concepts,

hence, one can consider resolutions in any category and by any class of objects apart from the

classical ones, injectives and projectives. We should point out the importance of the fact that

these concepts are given in terms of Hom-functor: this gives that the attained resolutions are

91
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unique up to homotopy, see Comparison Theorem Proposition 3.1.7. So, all additive functors

can be relatively derived.

In the second section, we introduce the principal tool, cotorsion pairs, of the general theory

of approximations. We deal with approximations induced by a cotorsion pair. The notion was

introduced by [Sal79] as an Ext-version of torsion theories for abelian groups. The problem,

purposed by [Sal79], about when a cotorsion pair of abelian groups has enough injectives or

projectives has been carried to any abelian categories. The theory looks for sufficient conditions

on a cotorsion pair to have enough injectives or projectives. One of the results enlightening that

problem was given by [ET01] with Salce Lemma: every cotorsion pair in R-Mod cogenerated

by a set has enough projectives and injectives, i.e., it is complete. This result, as well as the

purity notion, is the key point of the solution (see [BBE01]) to the Flat Cover Conjecture. It

also displays the strong link of complete cotorsion pairs with approximations. Apart from the

class of flat modules, the existence of projective precovers, injective envelopes, absolutely pure

preenvelopes in R-Mod, etc,. can be deduced from this result, as well.

Model structures on a category are another kind of approximations, built by [Qui67]. An

essential use in category theory is related to the existence of localization of categories, see

Chapter (IV), because model structures make the localization category equivalent to a quotient

category. We are interested in the connection between model categories and complete cotorsion

pairs. Hovey in [Hov02] presented a one-to-one correspondence between abelian model

categories and two compatible cotorsion pairs. Later Gillespie in [Gil11] extended it for a

general setting, exact categories. In the last section, we stress this connection.

3.1 Covers and Envelopes

Let C be an abelian category.

Definition 3.1.1. Let F be a class of objects of C.
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• A morphism φ : F → X of C is said to be an F-precover of X if F ∈ F and if

Hom(F ′, F )→ Hom(F ′, X)→ 0 is exact, for every F ′ ∈ F . If any morphism f : F →

F with φ ◦ f = φ is an isomorphism, then it is called an F-cover of M . If every object

has an F-(pre)cover, then F is called a (pre)covering class.

• A morphism φ : X → F of C is said to be an F-preenvelope of X if F ∈ F and

if Hom(F, F ′) → Hom(X,F ′) → 0 is exact, for every F ′ ∈ F . If any morphism

f : F → F such that f ◦ φ = φ is an isomorphism, then it is called an F-envelope of

M . If the class F is such that every object has an F-(pre)envelope, then F is called a

(pre)enveloping class.

In case C := R-Mod and F is the class of either torsion free R-modules (over an integral

domain R) or projective R-modules, the definition of F-cover is not the same as the usual

definitions of torsion-free covers as in [Eno63] and projective covers as in [Bas60] but they

agree, see [Xu96, Theorem 1.2.12]. Dually, when F is the class of injective modules, the

definition of F-envelopes and injective envelopes agree, see [Xu96, Theorem 1.2.11].

The next well-known result is stated for modules in [Xu96], but it is known that its proof

remains valid in any Grothendieck category.

Proposition 3.1.2. [Bas06, Theorem 1.2] Let C be a Grothendieck category and F be a class

of objects of C which is closed under direct limits. If an object X ∈ C has an F-precover then

X has an F-cover, as well.

F-precovers or F-preenvelopes are good enough to provide the machinery of relative

homological algebra because F-resolutions are unique up to homotopy. In addition, F-covers

and F-envelopes give minimal ones among F-precovers and F-envelopes, respectively, in the

sense that they are unique up to isomorphism and they are direct summand of any F-precover

andF-envelopes. Note thatF-(pre)covers andF-(pre)envelopes need not be epimorphisms and

monomorphisms unless F contains a generating set and a cogenerating set for C, respectively.



94

Definition 3.1.3. Let F be a class of objects of a category C. The right orthogonal class F⊥ of

F is

F⊥ := {X ∈ C| Ext(F,X) = 0, ∀F ∈ F}.

Dually, the left orthogonal class ⊥F of F is

⊥F := {X ∈ C| Ext(X,F ) = 0, ∀F ∈ F}.

The left orthogonal class ⊥F of a class F is closed under coproducts, direct summands and

extensions and contains all projective objects while the right orthogonal class F⊥ is closed

under products, direct summands and extensions and contains all injective objects.

Definition 3.1.4. Let C be a category. Given a class of objects F of C,

a special F-precover of an object X is an epimorphism φ : F → X such that F ∈ F and

Kerφ ∈ F⊥.

a special F-preenvelope of an object X is a monomorphism φ : X → F such that F ∈ F and

Cokerφ ∈ ⊥F .

From the long exact sequence of homology, we get that a special F-precover is an

F-precover, as well. Dually for special F-preenvelopes. The converse is not always true, but

the following proposition, called Wakamatsu’s lemma, says that from an F-cover, it is possible

to get a special F-precover.

Proposition 3.1.5. (Wakamatsu’s lemma)[BR07, pg 28] Let F be a class which is closed under

extensions. Then

(i) If φ : F → X is an F-cover of X , then Kerφ ∈ F⊥.

(ii) If φ : X → F is an F-envelope of X , Cokerφ ∈ ⊥F .
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For any class F of objects of a category C, we say that a complex A is Hom(F ,−)-exact

when Hom(F,A) is an exact complex for every F ∈ F . Dually, for Hom(−,F)-exact

complexes.

Definition 3.1.6. Let C be a category and F be a class of objects of C. For a given object X of

C,

A left F-resolution of X is a Hom(F ,−)-exact complex

. . . // F1
d1 // F0

d0 // X // 0 ,

with Fi ∈ F for all i ≥ 0, that is, each F0 → X and Fi → Kerdi−1, i ≥ 1, are

F-precovers. In this case, K0 := X , Ki := Kerdi−1, i ≥ 1, are called the 0th and the ith

F-syzygy of X , respectively.

The deleted left F-resolution of X , denoted by FX , is the complex

. . . // F1
d1 // F0

// 0 .

A right F-resolution of X is a Hom(−,F)-exact complex

0 // X d0 // F 0 d1 // F 1 d2 // . . . ,

with F i ∈ F for all i ≥ 0, that is, X → F 0 and Cokerdi−1 → F i, i ≥ 1, are

F-preenvelopes. Furthermore, C0 := X , Ci := Cokerdi−1, i ≥ 1, are called the 0th

and the ith F-cosyzygy of X , respectively.

The deleted right F-resolution of X , denoted by FX , is the complex

0 // F 0 d1 // F 1 d2 // . . . .
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A complete F-resolution of X is the complex

. . .→ F1 → F0 → F 0 → F 1 → . . .

obtained by composing a left and right F-resolution of X over F0 → X → F 0.

IfF is a precovering class in a category C then every object has a leftF-resolution: Start with

an F-precover d0 : F0 → X of X and take its kernel, K1 := Kerd0, again an F-precover d1 :

F1 → K1 and so on. The following proposition is very well-known and its proof comes from

classical arguments on commutative diagrams and universal properties of kernels and cokernels

because of the fact that a left F-resolution is a Hom(F ,−)-exact complex.

Proposition 3.1.7. [Comparison Theorem] Let FX → X and FX′ → X ′ be left F-resolutions

of X and X ′, respectively. Any morphism ϕ : X → X ′ induces a chain map φ : FX → FX′

which is unique up to homotopy. The dual one is for right resolutions.

As a consequence of Comparison Theorem, any two left or right F-resolutions of an object

are homotopy equivalent.

3.2 Cotorsion pairs

All categories in this section will be abelian unless otherwise stated.

Definition 3.2.1. A cotorsion pair, or cotorsion theory, is a pair of classes (F ,B) of objects of

C such that F⊥ = B and ⊥B = F .

Definition 3.2.2. A cotorsion pair (F ,B) is said
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to have enough injectives if for each object C ∈ C, there exists a short exact sequence in C

0→ C → B → F → 0

where F ∈ F and B ∈ B.

to have enough projectives if for each object C ∈ C, there exists a short exact sequence in C

0→ B → F → C → 0

with F ∈ F and B ∈ B.

complete if it has both enough injectives and projectives.

Definition 3.2.3. For a cotorsion pair (F ,B) in a category C, C is said to have enoughF-objects

(enough B-objects) if for every object C ∈ C there is an epimorphism (monomorphism) F →

C → 0 (0→ C → B) with F ∈ F (B ∈ B).

The canonical cotorsion pairs in a category C are (C, Inj) and (Proj, C). But they are not

always complete. A category C is said to have enough projectives if (Proj, C) is complete,

dually, to have enough injectives if (C, Inj) is complete.

Proposition 3.2.4. Let τ1 := (F1,B1) and τ2 := (F2,B2) be cotorsion pairs in C with F1 ⊆ F2.

If τ1 has enough projectives and τ2 has enough injectives then τ1 has enough injectives and τ2

has enough projectives.

Proof. Suppose that τ1 has enough projectives and τ2 has enough injectives. Then for any object

X ∈ C, there are short exact sequences 0→ X → B2 → F2 → 0 and 0→ B1 → F1 → F2 → 0

where B2 ∈ B2, F2 ∈ F2, F1 ∈ F1 and B1 ∈ F1. We may embed them into a commutative
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diagram

0

��

0

��
B1

+3

��

B1

��
0 // X

��

// T //

��

F1
//

��

0

0 // X // B2
//

��

F2

��

// 0

0 0

with exact rows and columns. Since B2 ⊆ B1, T ∈ B1. So τ1 has enough injectives.

Again by assumption, there are short exact sequences 0 → B′1 → F ′1 → X → 0 and

0 → B′1 → B′2 → F ′2 → 0 with B′2 ∈ B2, F ′2 ∈ F2, F ′1 ∈ F1 and B′1 ∈ F1, which bring on the

following commutative diagram

0

��

0

��
0 // B′1

��

// F ′1 //

��

X

��

// 0

0 // B′2

��

// T ′ //

��

X // 0

0 // F ′2 +3

��

F ′2

��
0 0

with exact rows and columns. Then T ′ ∈ F2 and so τ2 has enough projectives.

As a consequence of Proposition 2.3.4, we have:

Corollary 3.2.5. Let C be a category and (F ,B) a cotorsion pair in C

(i) If C has enough projectives and (F ,B) has enough injectives then (F ,B) is complete.
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(ii) If C has enough injectives and (F ,B) has enough projectives then (F ,B) is complete.

(iii) If C has enough projectives and injectives, then (F ,B) has enough injectives if and only

if (F ,B) has enough projectives.

The last assertion (iii) is called Salce lemma in case C := R-Mod.

Definition 3.2.6. A class F of objects of an abelian category C is said to be

resolving provided that F is closed under extensions, Proj ⊆ F and if whenever

0→ F ′ → F → F ′′ → 0

is exact with F, F ′′ ∈ F , F ′ belongs to F , as well.

coresolving provided that F is closed under extensions, Inj ⊆ F and if whenever

0→ F ′ → F → F ′′ → 0

is exact with F, F ′ ∈ F , F ′′ belongs to F , as well.

Definition 3.2.7. A cotorsion pair (F ,B) is said to be hereditary if Exti(F,B) = 0 for all

F ∈ F , B ∈ B and i ≥ 1.

The following proposition ties up the notions of coresolving-resolving classes with hereditary

cotorsion pairs.

Proposition 3.2.8. [SS11, Lemma 4.25] Let (F ,B) be a cotorsion pair in C.

(i) If it is hereditary, then F is resolving and B is coresolving.

(ii) If C has enough F-objects and F is resolving then the cotorsion pair is hereditary.
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(iii) If C has enough B-objects and B is coresolving then the cotorsion pair is hereditary.

Proof. The part (i) is easy to observe. And (ii) and (iii) are dual to each other, so we just prove

(ii). Assume that C has enough F-objects and F is resolving. By induction, it is enough to

prove Ext2(F,B) = 0 for all F ∈ F and B ∈ B. Take an exact sequence

0→ B → X1 → X2 → F → 0 (3.2.1)

in C. We split it into two short exact sequences.

0→ K → X2 → F → 0,

0→ B → X1 → K → 0.

By assumption, there is an epimorphism F ′ → X2 with F ′ ∈ F . Then by usual pullback

argument and equivalence relation on Yoneda extensions, the exact sequence 3.2.1 is equivalent

to an exact sequence

0→ B → T → F ′ → F → 0

with Ker(F ′ → F ) ∈ F because F is a resolving class. Then the assertion follows.

The next result is given in [AA02, Theorem 3.1] for the category R-Mod. But the argument

is quite categorical. So we restate it here for abelian categories.

Proposition 3.2.9. Let (F ,B) be a hereditary cotorsion pair. Suppose that we have the
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following diagram with the exact row and exact columns

0

��

0

��

0

��
0 // B1

//

��

B //

��

B2
//

��

0

0 // F1
//

��

F //

��

F2
//

��

0

0 // X //

��

Y //

��

Z //

��

0

0 0 0

If the left and the right exact columns are special F-precovers of X and Z, respectively, then

the diagram can be completed to the commutative diagram with exact rows in such a way that

the middle column is a special F-precover of Y .

Now we discuss on some special cases of cotorsion pairs which guarantee the completeness.

Definition 3.2.10. Let F be any class of objects. The pair (F ,F⊥) (not necessarily a cotorsion

pair!) is said to be

cogenerated by a set S if it satisfies the following:

X ∈ F⊥ ⇔ Ext(F,X) = 0 ∀F ∈ S.

generated by a set S if it satisfies the following:

X ∈ F ⇔ Ext(X,T ) = 0 ∀T ∈ S.

Definition 3.2.11. Consider a direct system (Mα | α ≤ λ) of objects of C indexed on some

ordinal λ. It is said to be a continuous system of monomorphisms if M0 = 0, Mβ = lim−→α<β
Mα

for each limit ordinal β ≤ λ and all the morphisms in the system are monomorphisms.
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If C is a Grothendieck category, it is enough Mα → Mα+1 to be a monomorphism for all

α < λ in order to be a continuous direct system of monomorphisms, due to the exactness of the

direct limit functor.

Definition 3.2.12. Let S be a class of objects which is closed under isomorphisms. An object

M of C is said to be S-filtered if there is a continuous system (Mα | α ≤ λ) of subobjects of M

which satisfies M = Mλ and Mα+1/Mα is isomorphic to an object of S for each α < λ. The

chain, (Mα | α ≤ λ), is called S-filtration of M .

The class of S-filtered objects in C is denoted by Filt(S). The relation S ⊆ Filt(S) always

holds. In case of being Filt(S) ⊆ S, the class S is said to be closed under filtrations. A class F

of objects in C is called deconstructible if there is a set S such that F = Filt(S).

Proposition 3.2.13. [Sto13a, Lemma 1.6] Let C be a Grothendieck category. Every

deconstructible class in C is closed under filtrations. In particular, it is closed under extensions

and coproducts.

Proof. Let F = Filt(S) be a deconstructible class with a set S and let X be an object with

F-filtration, (Xα)α≤σ. The idea is to fill each gap between two consecutive subobjects with

some S-filtration and to shift ordinals. Consider the canonical short exact sequence 0→ Xα →

Xα+1 → Xα+1/Xα → 0 for each α < σ. By assumption, Xα/Xα+1 has an S-filtration

(Yγ(α+1)/Xα+1)γ≤σα+1 . Then (Yγα)γα with γ ≤ σα for each α < σ gives the desired refined

S-filtration of X .

The dual concept of continuous system and filtrations are continuous inverse systems and

inverse transfinite extensiones, see [EIJ07].

The original version of the following proposition, known as Eklof Lemma, was stated first

for modules in [Ekl77]. But it is already known that it remains true for any abelian category.
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Proposition 3.2.14. (Eklof Lemma)[EO02, Proposition 3.1.1] Let C be an abelian category with

direct limits and A,C be objects of C. If A is the direct limit of a continuous chain of subobjects

{Aα}α<λ for an ordinal number λ, such that Ext(A0, C) = Ext(Aα+1/Aα, C) = 0 for all α < λ,

then Ext(A,C) = 0.

By Proposition 3.2.14, in such a category, we may deduce that if (F ,B) is a cotorsion

pair then F is closed under filtrations, F = Filt(F). And we already know that F is closed

under direct summands and extensions. A natural question raises up here: Are these sufficient

conditions for a class to be the left part of a cotorsion pair? Later, we will see that it is true for

deconstructible classes having a generator of C. Note that another consequence of Eklof Lemma

is that if F is a deconstructible class, then the pair (F ,F⊥) is cogenerated by a set.

Now, suppose that C is a Grothendieck category with a generator G. For an object S ∈ C,

there is a set T of short exact sequences

0→ K → T → S → 0

such that every short exact sequence

0→ X → Y → S → 0

can be obtained as a pushout diagram from a short exact sequence in T . The argument is based

on the generator G, but we refer to [Sto13, Proposition 5.3] for details. As a result, an object X

belongs to S⊥ if and only if Hom(−, X) leaves exact each short exact sequence in T . In this

respect, a pair (F ,F⊥) cogenerated by a set in a Grothendieck category resembles the canonical

cotorsion pair (C, Inj) because they admit a kind of ‘Baer criterion’. Then Quillen’s small object

argument can be applied for them, as well.

Proposition 3.2.15. Let C be a Grothendieck category and F be a class of objects of C closed

under direct sums and extensions. If the pair (F ,F⊥) is cogenerated by a set S, then for any
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object X ∈ C, there exists a short exact sequence

0→ X → C → F → 0 (3.2.2)

where C ∈ F⊥ and F ∈ Filt(S).

Proof. Let S =
⊕

Si∈S Si. By assumption, S ∈ F and S is a generating object for (F ,F⊥).

Now take an object X ∈ C. Then M1 is the pushout

⊕
T K

(IK) � � //

��

⊕
T T

(IK)

��
X �
� //M1(X).

where IK := Hom(K,X) and the coproduct is indexed by all short exact sequences belonging

to T . By the same argument in Proposition 1.6.3, Mα(X) is defined inductively. Note that

M1(X)/X ∼=
⊕
T S

(IK). Due to the pushot property, Mα+1/Mα is isomorphic to a coproduct

of S. There is a regular ordinal λ for which each K is λ-presentable. Then for a regular cardinal

β > λ, Mβ(X) belongs to F⊥ and Mβ(X)/X ∼= (lim−→α<β
Mα)/X ∼= lim−→α<β

(Mα/X). By

construction, Mβ(X)/X ∈ Filt(
⊕
T S). Then Proposition 3.2.13 implies that Mλ(X)/X ∈

Filt(S).

Remark 3.2.16. The previous proposition is explicitly stated in [SS11, 2.13]. But it appears in

[EEGO04, Theorem 2.5] with an extra hypothesis of that F is closed under well-ordered direct

limits. Howewer it is just to say that F in 3.2.2 belongs to F . A careful reader may notice that

in the proof of [EEGO04, Theorem 2.5] what they find as a quotient of an F⊥-preenvelope of

an object X is an object belonging to Filt(S) without assuming that assumption on F .

The following result is proved separately in [Eno12] for R-Mod and in [SS11] for

Grothendieck categories. But we see that it is a direct consequence of Proposition 3.2.15. The

proof is due to Prof. Sergio Estrada by a personal communication.
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Proposition 3.2.17. Any deconstructible class in a Grothendieck category is a precovering

class.

Proof. Let F be a deconstructible class and let X be an object in C. Then by Proposition 3.2.15

and Proposition 3.2.13, the pair (F ,F⊥) has enough injectives. Now consider the subobject X

of X which is the sum of all images of morphisms with domain in F , that is,

X :=
∑

ϕ∈Hom(F,X)
F∈F

Im(ϕ).

Since C is well-powered, this sum is well-defined. By Proposition 3.2.13, F is closed under

coproducts, so there is a short exact sequence 0→ K → G→ X → with G ∈ F . We consider

the exact sequence 0→ K → C → F → 0 with F ∈ F and C ∈ F⊥ obtained by Proposition

3.2.15. A standard pushout argument gives an F-precover of X , which is an F-precover of X ,

as well because of the construction of X .

In an abelian category C, a cotorsion pair (F ,B) is said to be small if F contains a generator

and there is a set of monomorphism ιS with cokernel S ∈ F such that B ∈ B if and only if

B has an injective property with respect to each ιS . For a Grothendieck category, in [EGPT12,

Lemma 4.3], it was proved that a small cotorsion pair is just a cotorsion pair (F ,B) cogenerated

by a set where F has a generator.

Corollary 3.2.18. [Sto13a, Proposition 2.9] Let C be a Grothendieck category and F be a class

of objects of C. Then

(i) If F is a deconstructible class, F = Filt(S), where S is a set, then the class of all direct

summands of Filt(S) is a deconstructible class, as well.
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(ii) If (F ,B) is a cotorsion pair cogenerated by a set S such that F contains a generator G

of C, then F consists of direct summands of (S ∪ G)-filtered objects. In addition, it is

complete.

Proof. (i) It follows from [Sto13a, Proposition 2.9].

(ii) It is a small cotorsion pair. Then it follows from [Gill07, Lemma 3.6]. As an alternative

proof, note that Filt(S ∪ G)-precovers are epimorphisms because G ∈ Filt(S ∪ G). For

F ∈ F , there is a commutative diagram

0

��

0

��
0 // X //

��

K //

��

F //

��

0

0 // B //

��

K ′′

��

// F // 0

K ′

��

+3 K ′

��
0 0

(3.2.3)

where B ∈ B, K ′ ∈ Filt(S ∪ G) and K → F is a Filt(S ∪ G)-precover by Proposition

3.2.15 and 3.2.17. By Proposition 3.2.13, K ′′ ∈ Filt(S ∪G). Then F is a direct summand

of K ′′. If we replace any object Y instead of F in the diagram 3.2.3, then the second

exact row would be a special F-precover of Y . Since the pair (F ,B) has already special

B-preenvelopes, then it is complete.

We already know that a cotorsion pair whose left class is deconstructible is always a cotorsion

pair cogenerated by a set. What Corollary 3.2.18 says is that the converse is true for a

Grothendieck category when the left class of a cotorsion pair contains a generator for C.
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Corollary 3.2.19. Let C be a Grothendieck category. If F is a deconstructible class which is

closed under direct summands and contains a generator, then (F ,F⊥) is a complete cotorsion

pair.

Proof. Let F = Filt(S). Then (⊥(F⊥),F⊥) is a cotorsion pair cogenerated by S and ⊥(F⊥)

contains a generatorG for C. Then by Corollary 3.2.18-(ii), ⊥(F⊥) consists of direct summands

of Filt(S ∪G), that is, ⊥(F⊥) ⊆ F .

A typical example of the previous corollary is the class of flat R-modules, F lat(R). Flat

modules are closed under pure-subobjects, pure-quotients and filtrations. Besides, the category

R-Mod has enough pure-subobjects. In that manner, a filtration of a flat R-module can be

constructed. Then the class F lat(R) constitutes a left class of a cotorsion pair. Modules in

F lat(R)⊥ are called cotorsion modules.

Proposition 3.2.20. [Bas06, Theorem 3.2] Let C be a Grothendieck category and F be a class

of objects of C which is closed under coproducts and direct colimits. If there is a subset S of F

such that every object of F can be written as a direct limit of objects from S, then F is covering.

3.3 Model category and cotorsion pairs: Hovey correspondence

In this section, we focus on the connection between complete cotorsion pairs and model

categories which was given by Hovey in [Hov02] in a general setting, that is, for proper classes

in an abelian category. Later, it was carried into exact categories in a full generality by Gillespie

in [Gil11]. We use this connection in order to define pure derived categories in Chapter (VII).

But here we prefer to keep terminology and results needed as basic as possible in order to

comprehend the underlying idea.

We shall begin with the formal definition of model categories. Recall that a morphism i :
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A → B is said to have the left lifting property with respect to p : X → Y , or p is said to have

the right lifting property with respect to i, if for every commutative diagram

A //

i
��

X

p
��

B //

h

>>

Y

there exist a morphism h : B → X which makes the triangles commutative.

Definition 3.3.1. A model category is a complete and cocomplete category A, together with

three classes of maps (weak equivalences, fibrations and cofibrations) satisfying the following

axioms:

M1) Two out of three axiom: If f and g are morphisms in C such that g ◦ f is defined and two

of f , g and g ◦ f are weak equivalences, then so is the third.

M2) Retract axiom: If f and g are maps in C such that f is a retract of g in Mor(A) and g is

one of a weak equivalence, a fibration or a cofibration, then so is f .

M4) Lifting axiom: Given a commutative diagram in A

A //

i
��

X

p

��
B // Y,

i has the left lifting property with respect to p and that p has the right lifting property with

respect to i if

(i) i is a cofibration and p is a fibration which is also a weak equivalence (= trivial

fibration), or

(ii) p is a fibration and i is a cofibration which is also a weak equivalence (= trivial

cofibration).

M5) Factorization axiom: Any morphism f ∈ A admits functorial factorizations
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(i) f = q ◦ i, where i is a cofibration and q is a trivial fibration, and

(ii) f = p ◦ j, where p is a fibration and j is a trivial cofibration.

Definition 3.3.2. Let A be a model category and A be an object. Then it is called

(trivial) cofibrant if the unique morphism 0→ A is a (trivial) cofibration,

(trivial) fibrant if the unique morphism A→ 0 is a (trivial) fibration.

Axioms of a model category allow to do cofibrant and fibrant replacements for any object.

Indeed, for any object X ∈ A, consider the zero morphism 0 → X . Then by (M5)-(i), it has

a factorization as 0 → Q(X) → X where 0 → Q(X) is a cofibration. So Q(X) is a cofibrant

object and Q(X) → X is said to be cofibrant replacement of X . Analogously, X → 0 is

factorized through a morphism X → R(X) where R(X) is a fibrant object. Then X → R(X)

is called a fibrant replacement of X .

There are two homotopy relations on the set of morphisms. One of them is the left homotopy

relation. It is defined in terms of cylinder objects. The other one is the right homotopy relation,

which is given through path objects. If given two objectsX and Y are both cofibrant and fibrant,

then the left and right homotopy relations on Hom-set coincide and form an equivalence relation

on morphisms. It is denoted by ∼ and

π(X, Y ) := HomC(X, Y )/∼.

We refer to [DS95] for more details. For a model category A, The homotopy category, denoted

by Ho(A), is the localization of A with respect to weak equivalences, that is, Ho(C) :=

A[W−1]. In Section (IV.1), we will detail what the localization of a category is, but roughly

it is a category where morphisms in W are invertible. The localization of a category with

respect to any classW of morphisms can be always defined. However, in general it is not easy

at all to understand its morphisms. The advantage of finding a model structure on A with W
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the class of weak equivalences is the following fact:

HomHo(A)(X, Y ) ∼= π(RQ(X), RQ(Y )).

It means that a big class of morphisms in the localization category is turned out being isomorphic

to just a quotient of a morphism set.

Definition 3.3.3. An abelian model category is a complete and cocomplete abelian category A

equipped with a model structure such that

(i) a map is a cofibration if and only if it is a monomorphism with cofibrant cokernel,

(ii) a map is fibration if and only if it is an epimorphism with fibrant kernel.

Definition 3.3.4. A subcategory of an abelian category A is called thick if it is closed under

direct summands and whenever two out of three entries in a short exact sequence are in the

class, so is the third.

For a model category A,

C : the class of all cofibrant objects,

F : the class of all fibrant objects,

W: the class of all trivial objects.

Proposition 3.3.5. [Hov02, Proposition 4.1, Lemma 4.3] If A is an abelian model category,

thenW is a thick subcategory and the pairs (C,F ∩ W), (C ∩ W ,F) are complete cotorsion

pairs.

The next proposition states the converse of Proposition 3.3.5 and completes the Hovey

correspondence.

Proposition 3.3.6. [Hov02, Section 5] Suppose C,F and W are three classes of objects in a

bicomplete abelian category A such that
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(i) W is thick,

(ii) (C ∩W ,F) and (C,F ∩W) are complete cotorsion pairs.

Then there exists a unique abelian model structure on C such that C is the class of cofibrant

objects, F is the class of fibrant objects andW is the class of trivial objects.

(Trivial) cofibrations of the model structure mentioned in Proposition 3.3.6 are

monomorphisms with cokernel in C, (C ∩ W) and (trivial) fibrations are epimorphisms with

kernel in F , (F ∩ W). A weak equivalence is a morphism which has a factorization with a

trivial cofibration followed by a trivial fibration. Then a cofibrant replacement of an object X is

an epimorphism with kernel from F ∩W and a fibrant replacement of X is a monomorphism

with cokernel from C ∩W .

Regarding to the Hovey correspondence given in Proposition 3.3.5 and 3.3.6, two complete

cotorsion pairs of the form (C ∩W ,F) and (C,F ∩W) are called Hovey pairs. Then the result

says that, for an abelian category, there is a bijection between abelian model structures on it and

Hovey pairs.

Besides, in an abelian model category, there is a nice characterization of right and left

homotopy relations on morphisms (see [Gil11, Proposition 4.3]). Let f, g : X ⇒ Y be two

morphisms.

(i) f is right homotopic to g if and only if g − f factors through an object from C ∩W .

(ii) f is left homotopic to g if and only if g − f factors through an object from F ∩W .

(iii) If X and Y are both fibrant and cofibrant, f is homotopic to g if and only if g − f factors

through an object from F ∩ C ∩W .
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The most known model structures in homological algebra are on the category of complexes.

Let us expand on it. If an abelian category A has enough projectives and X is a bounded below

complex over A, then it is a classical result that there is a quasi-isomorphism P → X with a

bounded below complex P of projectives. In [Qui67, Section I.1, Example-B], Quillen shows

that there is a model structure on C+(A) whose cofibrant objects are bounded below complexes

of projectives and fibrant objects are all bounded below complexes.

A bounded below complex P of projectives has an essential property in C(A): the internal

hom functor,Hom(P, -) preserves quasi-isomorphisms and epimorphisms in C(A). Therefore,

a complex (not necessarily bounded below) which satisfies that property in C(A) is called

dg-projective. In [AH86, 1.9], it was proved that for every complex X over R-Mod there is a

quasi-isomorphism P → X with a dg-projective complex P . In fact, that quasi-isomorphism

can be taken as an epimorphism. In [Hov99, Section 2.3], Hovey constructs a cofibrantly

generated model structure in C(R-Mod) whose cofibrant objects are dg-projective complexes.

That abelian model structure is called the projective model structure on C(R-Mod) and its

homotopy category is the derived category, D(R). The dual argument can be done for

dg-injectives and we get the injective model structure. The Hovey pairs which correspond to

the projective model structure on C(R-Mod) are

(dg Proj,Acic), (Proj,C(C))

where dg Proj is the class of dg-projective complexes. As a matter of fact, they are obtained

by lifting the canonical cotorsion pair (Proj, R-Mod) to C(R-Mod). In [Gill04], Gillespie

formalized this phenomenon for more general cotorsion pairs. The advantage is that one

could find a model structure on the category of complexes over an abelian category so that its

homotopy category would be the derived category even though it doesn’t have enough neither

injectives nor projectives.

Definition 3.3.7. Let (F ,B) be a cotorsion pair in an abelian category A and X be a complex

in C(A). Then
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(i) X ∈ F̃ if X is exact and Zn(X) ∈ F for all n.

(ii) X ∈ B̃ if X is exact and Zn(X) ∈ B for all n.

(iii) X ∈ dg F̃ if Xn ∈ F for each n and HomK(A)(X,B) = 0 for all B ∈ B̃.

(iv) X ∈ dg B̃ if Xn ∈ B for each n and HomK(A)(A,X) = 0 for all A ∈ F̃ .

From now on, (F ,B) will be a cotorsion pair in an abelian category. By [Gill04, Lemma

3.10], we already know F̃ ⊆ dg F̃ ∩ Acic and B̃ ⊆ dg B̃ ∩ Acic.

We recall some related results from [Gill04] and [Gill07].

Proposition 3.3.8. (i) If A has enough F objects then (F̃ , dg B̃) is a cotorsion pair and

C(A) has enough F̃ objects.

(ii) If A has enough B objects then (dg F̃ , B̃) is a cotorsion pair and C(A) has enough B̃

objects.

In case (dg F̃ , B̃) and (F̃ , dg B̃) are cotorsion pairs, they are called the induced cotorsion

pairs.

Proposition 3.3.9. (i) If F̃ or dg F̃ is resolving then F is resolving, as well.

(ii) If B̃ or dg B̃ is coresolving then B is coresolving, as well.

Proposition 3.3.10. If F is resolving then dg F̃ is resolving. If B is coresolving then dg B̃ is

coresolving.

The pairs (dg F̃ , B̃) and (F̃ , dg B̃) are called compatible if F̃ = dg F̃ ∩ Acic and B̃ =

dg B̃ ∩ Acic. The reason why we insist on them to be compatible is to get a model structure on

C(A) whose weak equivalences would be precisely quasi-isomorphisms. As a consequence, its

homotopy category would correspond to the derived category. For the canonical cotorsion pairs

(Proj,A) and (A, Inj), the induced cotorsion pairs are always compatible.
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Proposition 3.3.11. (i) If F̃ = dg F̃ ∩Acic and C has enough F objects then F is resolving.

(ii) If B̃ = dg B̃ ∩ Acic and C has enough B objects then B is coresolving.

For an abelian category with enough projectives and enough injectives, the compatibility

of the induced cotorsion pairs is equivalent to the cotorsion pair (F ,B) to be hereditary, see

[Gill04, Theorem 3.12]. This is also the case for a small cotorsion pair in a Grothendieck

category, as well.

Proposition 3.3.12. [Gill07, Corollary 3.9] Let (F ,B) be a small cotorsion pair in a

Grothendieck category C. Then the following are equivalent:

(i) (dg F̃ , B̃) and (F̃ , dg B̃) are compatible.

(ii) F is resolving, or equivalently, B is coresolving.

(iii) (F ,B) is hereditary.

(iv) F̃ = dg F̃ ∩ Acic.

While the problem of compatibility of the induced cotorsion pairs is solved by adding some

extra conditions on a category and on cotorsion pairs, the problem of completeness of the

induced cotorsion pairs is not known yet. That is, for any abelian category the completness of a

cotorsion pair (F ,B) need not imply the completness of the induced pairs. But [YL14] proved

that in a module category R-Mod, the induced cotorsion pairs of a complete and hereditary

cotorsion pair are hereditary, complete and compatible. The proof is based on Proposition 3.2.9.

Note that it implies that for every exact complex E there is a short exact sequence

0→ B → F → E → 0

with B ∈ B̃ and F ∈ F̃ . Then by the same argument done in [YL14], we have the following:
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Proposition 3.3.13. If (F ,B) is a hereditary complete cotorsion pair in a Grothendieck

category A, then (F̃ , dg B̃) is a complete cotorsion pair.

Proof. It is a cotorsion pair because A is a Grothendieck category. Completeness follows

from standard pullback arguments and the fact that for every complex X there are short exact

sequences

0→ I → E → X → 0

0→ X → I ′ → E ′ → 0

where E and E ′ are acyclic complexes and I and I ′ are dg-injectives.

Another result is by [SS11] for Grothendieck categories.

Proposition 3.3.14. [Sto13a, Theorem 4.2] Let A be a Grothendieck category and F be a

decontructible class of objects in A. Then the classes C(F) and F̃ are deconstructible classes

in C(A). In addition, if F has a generator for A, then dg F̃ is deconstructible, as well.

The following fulfills the deficient part in Proposition 3.3.13 for deconstructible classes.

Proposition 3.3.15. ([SS11, Theorem 4.22]) Let A be a Grothendieck category and F be a

deconstructible class such that

(i) F is resolving and closed under direct summands, and

(ii) F has a generator of A.

Then the induced pairs (dg F̃ , B̃) and (F̃ , dg B̃), B := F⊥, are complete, compatible and

hereditary cotorsion pairs in C(A).

There are other cotorsion pairs in C(A) by using a cotorsion pair (F ,B) in A cogenerated

by a set.
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Proposition 3.3.16. [Gill08, Section 3-4] Let (F ,B) be a cotorsion pair in A.

(i) (⊥C(B),C(B)) and (C(F),C(F)⊥) are cotorsion pairs .

(ii) If B contains a cogenerator of finite injective dimension, then (C(F) ∩ Acic, (C(F) ∩

Acic)⊥) is a cotorsion pair.

(iii) If F contains a generator of finite projective dimension, then (⊥(C(B) ∩ Acic),C(B) ∩

Acic) is a cotorsion pair

(iv) (F ,B) is small andF contains a generator of finite projective dimension, then (⊥(C(B)∩

Acic),C(B) ∩ Acic) and (⊥C(B),C(B)) are small, as well. Furthermore, that pair is a

Hovey pair.

Proposition 3.3.17. [EJ11b, Theorem 7.4.2] Let (F ,B) be a cotorsion pair in a Grothendieck

category A which is cogenerated by set. Suppose that A has a projective generator. Then

(C(F),C(F)⊥) and (C(F) ∩ Acic, (C(F) ∩ Acic)⊥ are small cotorsion pairs, as well.

Furthermore, these constitute a Hovey pair, that is, Acic∩(C(F) ∩ Acic)⊥) = C(F)⊥.



CHAPTER FOUR

CARTAN-EILENBERG CATEGORIES

The subject of this capitulo is Cartan-Eilenberg categories. They were introduced in

[GNPR10]. There are to ways to derive an additive functor: The most common way based

on [CE56] and developed by Grothendieck and his puppils is via the derived category and by

using projective resolutions. The other one is by finding a model structure on the category and

defining it on its homotopy category. The latter one is somehow restrictive. As for the first case,

what is done to get the derived category D(C) is firstly to pass to the homotopy category K(C).

Here, two deleted projective or injective resolutions of an object are isomorphic. And they

are isomorphic to the object in derived category. A deleted projective resolution of an object

plays an essential role in the theory because they preserve quasi-isomorphisms by the covariant

internal Hom-functor. Complexes with that property are called K-projective (or q-projective).

By these observations, left Cartan-Eilenberg categories provide two classes of morphisms

(S,W ), which resemble the relation between homotopy equivalences and quasi-isomorphisms,

and (S,W )-cofibrant objects, which behave as K-projectives. In [GNPR10], they show that

if a category C has enough projectives, then the canonical pair (S,W ), where S and W are

the class of homotopy equivalences and quasi-isomorphisms, respectively, on C+(C) provides

a left Cartan-Eilenberg category structure. In [Pas12], a counterexample on C+(C) is showed

when C hasn’t enough projectives, that is, in such case, C+(C) is not a left Cartan-Eilenberg

category with the canonical pair (S,W ). In this chapter, we prove that the first example comes

from a cotorsion pair in C and we also supply a machinery that produces left Cartan-Eilenberg

categories on C(C) or on a subcategory of C+(C) for more general categories even though C

have no enough projectives. The first and second sections are preliminary parts of this chapter.

In the third section, we recall some facts from [GNPR10]. Original results can be found in the

last section.

117
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4.1 Localization of categories

This section is devoted to localization of categories. So we begin by giving the formal definition.

Definition 4.1.1. Let C be a category andW be a family of morphisms in C. A category C[W−1]

with a functor γ : C → C[W−1] is called a localization of C by W provided that

- for all w ∈ W , γ(w) is an isomorphism,

- for any functor F : C → D such that F (w) is an isomorphism for all w ∈ W , there exists

a unique functor FW : C[W−1]→ D such that the following diagram is commutative

C γ //

F
��

C[W−1]

FW{{
D

From the definition it is clear that if C[W−1] exists then it is unique up to equivalence of

categories. There is also an equivalence of categories (C[W−1])op ∼= (Cop)[(W op)−1]. Here

we should highlight the term ‘category’ in the definition. As we detail it presently, for any

category and any class of morphisms there is always a potential candidate which satisfies nearly

these conditions. In the progression of getting that ‘potential candidate’, it goes far from being

Hom-set category. This potential candidate would be the solution to the problem if we didn’t

look for a category with a set of morphisms. Except for some special cases such as derived

categories and reflective subcategories, the existence of such a localization of a category by any

class of morphisms W is still an open problem.

As we have mentioned, we recall the construction of the ‘potential candidate’ C[W−1]. First

we keep objects the same, Ob(C[W−1]) := Ob(C).

Now, we put an artificial arrow mw : Y → X in Mor(C) for each w : X → Y ∈ W . We get

a new class Mor(C) ∪W ′, where W ′ is the class of added arrows for each w ∈ W .
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In order to define compositions in Mor(C) ∪ W ′, we consider all possible finite paths in

Mor(C) ∪ W ′. To make that definition of compositions well-defined, we put an equivalence

relation on paths subject to elementary operations:

- A
f // B

g // C ∼ A
g◦f // C ,

- X
w // Y

mw // X ∼ X
id // X ,

- Y
mw // X

w // Y ∼ Y
id // Y ,

- Y
id // Y

mw // X ∼ Y
mw // X

id // X ∼ Y
mw // X ,

that is, two paths with common beginning and common end are equivalent if one can be

obtained from the other by finite elementary operations. So, we define HomC[W−1](X, Y ) as

the equivalence classes of paths which begin with X and end with Y .

Now, γ : C → C[W−1] is defined as the identity on objects and γ(f) is the equivalence class

of the path f , for a morphism f : A→ B in C. γ(idX) is the identity morphism ofX in C[W−1].

So for any w : X → Y in W , the equivalence class of mw is the inverse of γ(w) in C[W−1], that

is, γ(w) is invertible. The pair (C[W−1], γ) satisfies the universal property stated in Definition

4.1.1. Indeed, for a functor F : C → D which sends any morphism in W to an isomorphism in

D,

FW (X) := F (X), X ∈ Ob(C),

FW ([f ]) := F (f), f ∈ Mor(C),

FW ([mw]) := (F (w))−1, mw ∈ W ′.

FW : C[W−1] → D is well-defined and F = FW ◦ γ. The uniqueness of FW is immediate

because the inverse of F (w), w ∈ W , is unique. If a class W of morphisms satisfies some nice

properties, these morphisms have easier representations.

Definition 4.1.2. A classW of morphisms is said to be a right multiplicative system if it satisfies
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RMS1) For all X ∈ C, idX ∈ W ,

RMS2) W is closed under compositions,

RMS3) given any morphisms, f : X → Y and w : Z → Y ∈ W , it can be completed to a

commutative diagram

T
g //

t
��

Z

w
��

X
f
// Y

in C, where t ∈ W ,

RMS4) for given morphisms f, g : X → Y in C, if there exists a morphism t : Y → Z ∈ W such

that t ◦ f = t ◦ g then there exists w : V → X ∈ W with f ◦ w = g ◦ w.

Its dual notion is called left multiplicative system. A class of morphisms is called a multiplicative

system if it is both right and left multiplicative.

Proposition 4.1.3. [GM03, Lemma III.2.8] LetW be a right multiplicative system in a category

C. Then morphisms in C[W−1] can be described as equivalence classes of right roofs (w, f)

T
f

��

w

~~
X Y

(4.1.1)

where w ∈ W, f ∈ Mor(C) with two right roofs (w, f) ∼ (w′, f ′) if and only if there is another

pair (r, h), r ∈ W , such that w ◦ r = w′ ◦ h and f ◦ r = f ′ ◦ g. The composition of two roofs

(w, f) and (w′, f ′) is the equivalence class of the roof (w ◦ t, f ′ ◦ g) where (t, g) is obtained by

(RMS3)

Let (C,W ) be any category with any class W of morphisms and γ : C → C[W−1] be the

canonical functor. W denotes the class of all morphisms f in C such that γ(f) is an isomorphism

in C[W−1]. It is clear that W ⊆ W .
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Definition 4.1.4. A class of morphisms W is called saturated if W = W .

We now return to classical cases of localizations of categories: the homotopy and the derived

category. Remember from Section 2.3 that the homotopy category, K(C), is the category having

the same objects of C(C), but Hom-set is the equivalence class of morphisms by ’homotopy’

relation, HomK(C)(A,B) = HomC(C)(A,B)/∼. It is essentially the localization C(C)[S−1] of

C(C) by the class S of homotopy equivalences.

What we want is firstly to make two deleted projective or injective resolutions of an

object identical and later to identify objects with their projective or injective resolutions. By

Comparison Theorem, Proposition 3.1.7, we carry out the first claim by the homotopy category

K(C). But an object is unlikely to be isomorphic to its deleted projective resolution in K(C).

The following proposition says that the only objects which are isomorphic with their deleted

projective resolutions are projectives.

Proposition 4.1.5. Let FX → X be a left F- resolution of X . It is an isomorphism in K(C) if

and only if the resolution is contractible. The dual one is valid for deleted right F-resolutions,

as well.

Proof. Consider the diagram

FX : . . . // F2

��

// F1

��

d1 // F0
//

d0
��

0

S0(X) : . . . // 0 // 0 // X // 0

If it is a homotopy equivalence then there is a morphism k : S0(M) → FX such that k ◦ d0 ∼

idFX and d0 ◦ k ∼ idS0(X). The latter means that d0 ◦ k = idX . Let si : Fi → Fi+1, i ≥ 0, be
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the homotopy between id and k ◦ d0. Then

. . . // F2

��

// F1

s1

~~ ��

d1 // F0

s0

~~

d0 //

��

M
k

~~

//

��

0

. . . // F2
// F1

d1 // F0
d0 //M // 0

shows that the left F-resolution of X is contractible.

Derived categories come up by the necessity of solving the second claim. The formalism

comes from Grothendieck and his school. The derived category of C is the localization,

C(C)[W−1], of C(C) by W , the class of quasi-isomorphisms. The class of quasi-isomorphisms,

W , may not be neither a left nor right multiplicative system in C(C), but its image, Q(W ), in

K(C) is a multiplicative system. Then morphisms in D(C) = C(C)[W−1] ' K(A)[Q(W )−1]

have nice representations as in 4.1.1.

Just as it happens in K(C), D(C) is rarely an abelian category, but it carries a triangulation,

see [Ver96].

As for the existence of derived category, it is solved for almost all categories of interest. In

[TLS00, Corollary 5.6], it was proved that D(C) has a set of morphisms if C is a Grothendieck

category. But, by the correspondence between Hovey pairs and model structures on abelian

categories mentioned in Section 3.3, the existence follows easily by the injective model structure

on C(C).

A full additive subcategory K′ of K(C) has a triangulation coming from K(C) if and only if

(i) A ∈ K′ if and only if A[1] ∈ K′, and

(ii) the cone of any map u : A → B in K′ is homotopically equivalent to some complex in

K′.
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In this case, K′ is called a ∆-subcategory of K(C).

For a ∆-subcategory K′ of K(C), we consider its derived category D′ obtained by inverting

quasi-isomorphisms in K′. In order to make D′ a subcategory of D(C), a sufficient condition is

the following (or its dual argument):

For every quasi-isomorphism X → B in K(C) with B ∈ K′, there exists a

quasi-isomorphism A→ X with A ∈ K′.

If D′ is a subcategory of D(C), then it is called a localizing subcategory of D(C). For more

details see [Lip09], [Ver96].

The problem of how to derive a functor F : C → C ′ between any abelian categories C and

C ′ is about extending F to a functor from D(C) → D(C ′). If C has enough projectives, then

deleted projective resolutions are not projective complexes but they have nice properties on

quasi-isomorphisms.

Definition 4.1.6. A complex M is called K-projective if for any quasi-isomorphism w : X →

Y and for any morphism f : M → Y in K(C) there is a unique morphism g : M → X in K(A)

such that w ◦ g = f in K(C). Its dual is called K-injective.

Proposition 4.1.7. [Spa88, Proposition 1.4] Let M be complex in C(C). The following are

equivalent:

(i) M is K-projective.

(ii) For every X ∈ K(C), the natural morphism HomK(C)(M,X) → HomD(C)(M,X) is a

bijection.

(iii) For every quasi-isomorphism w : X → Y , Hom(M,w) : Hom(M,X) → Hom(M,Y )

is a quasi-isomorphism.
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(iv) For every quasi-isomorphism w : X → Y , HomK(C)(M,w) : HomK(C)(M,X) →

HomK(C)(M,Y ) is an isomorphism.

(v) For every exact sequence E,Hom(M,E) is exact, that is, HomK(A)(M,E) = 0.

A projective object in C can be seen as a K-projective complex in the category C(C).

Proposition 4.1.8. [Spa88, Proposition 1.2] A complex of the form Sn(C) is K-projective if

and only if C is projective in C.

K-projective complexes are slightly different from dg-projective complexes mentioned in

Section 3.3. A dg-projective complex is K-projective but the converse isn’t true because an

acyclic complex is K-projective if and only if it is contractible. So a complex is dg-projective if

and only if it is a K-projective complex of projectives. In [Spa88, Corollary 3.5], Spaltenstein

proved that in an abelian category with enough projectives and exact direct limits, every complex

X has a left K-projective resolution, that is, a quasi-isomorphism M → X with a K-projective

complex M .

4.2 Orthogonal subcategory problem

Definition 4.2.1. A full isomorphism-closed subcategory C ′ of C is said to be a reflective

(coreflective) subcategory of C if the inclusion functor ι : C ′ → C has a left (right) adjoint

r : C → C ′. The functor r is called the reflection (coreflection).

A limit of a functor in a reflective subcategory C ′ is a limit in C as well, because ι preserves

limits. Conversely, if lim(ι ◦ F ) or colim(ι ◦ F ) exists for a functor F : I → C ′, then lim(ι ◦

F ) ∈ C ′ or r(colim(ι ◦ F ))=colimF. Then a reflective subcategory of a (finitely) complete or

cocomplete category is (finitely) complete or cocomplete as well, (see [Bor94, Proposition 3.5.3

and 3.5.5]). Dually, it is true for coreflective subcategories.
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Proposition 4.2.2. [Mit65, Proposition V.5.3] Let C ′ be a coreflective subcategory of an abelian

category C whose coreflector r preserves kernels. Then C ′ is also abelian.

Proposition 4.2.3. [AR94, Theorem 2.48] Let C be a locally presentable category. Then each

full subcategory of C closed under limits and α-filtered colimits for some regular cardinal α is

reflective in C.

Definition 4.2.4. Given a morphism f : X → Y and an object A of a category C

f is orthogonal to A , f ⊥ A, when for every morphism g : X → A, there exists a unique

morphism h : Y → A such that h ◦ f = g.

X
f //

g
��

Y

h~~
A

A is orthogonal to f , A ⊥ f , when for every morphism t : A → Y , there exists a unique

morphism h : A→ X such that f ◦ h = t.

A
h

~~
t
��

X
f
// Y

Let C be a category and W a class of morphisms of C. The orthogonal subcategory of C

determined by W is the full subcategory CW of C, whose objects are those A ∈ C such that

w ⊥ A for every w ∈ W .

Proposition 4.2.5. [Bor94, Proposition 5.4.4] Let ι : C ′ → C be a reflective subcategory with

reflection r : C → C ′. Let W be the class of all morphisms f ∈ C sent to an isomorphism by r.

Given C ∈ C, ηC : C → ι(r(C)) for the reflection of C. Then TFAE:

(i) X ∈ C ′;
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(ii) for all f ∈ W , f ⊥ X;

(iii) for all C ∈ C, ηC ⊥ X .

By Proposition 4.2.5, if a subcategory is a reflective subcategory then it is an orthogonal

subcategory determined by some class of morphisms W . The orthogonal subcategory problem

looks for some conditions for the converse, that is, when an orthogonal subcategory of C,

determined by some class of morphisms W , is a reflective subcategory. This problem has an

affirmative answer in a locally presentable category for a small orthogonal subcategory, i.e., that

is determined by a set of morphisms.

Theorem 4.2.6. [AR94, Theorem 1.39] Let C be a locally presentable category. Given a set W

of morphisms of C, the corresponding orthogonal subcategory CW is reflective in C.

Proof. Since W is a set, then we may find a regular cardinal λ for which the domain and

codomain of a morphism inW is λ-presentable. It is classical to observe that CW is closed under

limits and λ-directed colimits, see also [AR94, pg. 30-31]. Then it follows from Proposition

4.2.3.

The link between reflective subcategories and localization of categories is the fact that every

reflective subcategory can be seen as a localization of a category by some class of morphisms.

Proposition 4.2.7. [Bor94, Proposition 5.3.1] Let ι : C ′ → C be a reflective subcategory with

reflection r. Let W be the class of morphisms f ∈ C such that r(f) is an isomorphism. Then

the localization of C by W exists and it is equivalent to r : C → C ′. Moreover, W is a left

multiplicative system.
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4.3 Cartan-Eilenberg categories

Just as the relation among K(C), D(C) and K-projectives, in [GNPR10] a new concept, left

Cartan-Eilenberg categories, was developed. For short, a category (C, S,W ) with two classes of

morphisms S,W is considered. And its localizations C[S−1] and C[W−1] are replaced instead

of K(C) and D(C). Then (S,W )-cofibrant objects serves as K-projectives. In this section,

we don’t require Hom-set assumption in localizations of categories. So the existence of the

localization of a category with respect to any class is guaranteed. We shall remind some

terminology and results from [GNPR10].

Definition 4.3.1. A category (C, S,W ) is a category with strong and weak equivalences if

S ⊆ W . Morphisms in S are called strong equivalences and those in W are called weak

equivalences.

Since S ⊆ W , the functor γ is factorized over the canonical functor δ : C → C[S−1]. That

is, there is a unique functor γ′ : C[S−1]→ C[W−1] such that γ = δ ◦ γ′.

Definition 4.3.2. Let (C, S,W ) be a category with strong and weak equivalences. An object M

is called (S,W )-cofibrant, or cofibrant, if for each morphism w : X → Y in W , the map

Hom(M,w) : HomC[S−1](M,X)→ HomC[S−1](M,Y )

is bijective.

Theorem 4.3.3. Let (C, S,W ) be a category with strong and weak equivalences and M be an

object of C. The following are equivalent:

(i) M is cofibrant.

(ii) For each X ∈ C, γ′X : HomC[S−1](M,X)→ HomC[W−1](M,X) is bijective.
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Definition 4.3.4. A category (C, S,W ) with strong and weak equivalences is called left

Cartan-Eilenberg category if for each object X of C, there is a cofibrant object M with a

morphism α : M → X in C[S−1] such that γ′(α) is an isomorphism in C[W−1].

Let Ccof be the class of cofibrant objects and let Ccof be the full subcategory of C[S−1]

consisting of cofibrant objects

Proposition 4.3.5. A category (C, S,W ) with strong and weak equivalences is a left

Cartan-Eilenberg category if and only if

γ′ : Ccof → C[W−1]

is an equivalence of categories.

The problem of being a left Cartan-Eilenberg category is closely related with the problem of

being coreflective subcategory for Ccof in C[S−1].

If we are given a category (C, S,W ) with strong and weak equivalences, we may consider

the class δ(W ) in C[S−1]. The subcategory Ccof of cofibrant object is precisely determined by

δ(W ) in C[S−1], that is, consists of objects M such that M ⊥ δ(w) in C[S−1]. Therefore the

problem of whether a category (C, S,W ) is left Cartan-Eilenberg is the same as that of whether

Ccof is a coreflective subcategory of C[S−1].

In [GNPR10], it is proved that every model category contains a left Cartan-Eilenberg

structure inside. For a model category C, Cf and Ccf stands for the classes of Quillen fibrant and

fibrant-cofibrant objects, respectively. For the equivalence relation ∼l transitively generated by

the left homotopy, Sl will be the class of homotopy equivalences coming from ∼l.

Proposition 4.3.6. [GNPR10, Theorem 4.1.2] Let C be a model category and Wl be the

class of weak equivalences in Cf . Then (Cf , Sl,Wl) is a left Cartan-Eilenberg category with

(Sf ,Wf )-cofibrant objects are precisely objects in the class Ccf
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4.4 Examples

In this section, we give new examples of left Cartan-Eilenberg categories and study its relation

with cotorsion pairs. In view of the interlacing between Hovey pairs and abelian model category

structures mentioned in Section 3.3, it seemed reasonable to expect some sort of connection

between complete cotorsion pairs and left Cartan-Eilenberg categories. But it seems unlikely

to get a cotorsion pair from a left Cartan Eilenberg category. Howewer we show in the next

Proposition that we do get a left Cartan-Eilenberg category from a complete cotorsion pair on

the category of complexes.

For a class F of complexes, we denote by K(F) for the homotopy category of F .

Proposition 4.4.1. Let C be an abelian category and (F ,B) be any complete cotorsion pair

in C(C), where F is closed under suspensions. Then there is a left Cartan-Eilenberg category

structure on C(C) for which K(F) is the class of cofibrant objects.

Proof. For such a complete cotorsion pair (F ,B), we know that the inclusion functor ι :

K(F) ↪→ K(C) has a right adjoint functor r by [EJ11b, Theorem 5.1.7]. So let S be the class of

homotopy equivalences andW be the class of morphisms w such that r([w]) is an isomorphism.

Then clearly, S ⊆ W and the class K(F) is the class of (S,W )-cofibrant objects using the fact

that K(F) is a coreflective subcategory.

Example 4.4.2. Let C be a Grothendieck category and (F ,B) be a cotorsion pair in C

cogenerated by a set. Then by Proposition 3.3.16, there is a cotorsion pair (C(F),C(F)⊥)

which is cogenerated by a set. If C has enough F objects, that cotorsion pair is complete.

And also the class C(F) is closed under suspensions. By Proposition 4.4.1, the subcategory

K(C(F)) ↪→ K(C) is a coreflective subcategory. So C(C) is left Cartan-Eilenberg category

with (S,W )-cofibrant objects are K(F) := K(C(F)).

If we have an abelian model category C, then by Proposition 3.3.5 there is a Hovey pair,



130

(F ,B ∩ W), (F ∩ W ,B). Here, B,F are Quillen fibrant, cofibrant objects, respectively. So,

by Proposition 4.3.6, (B, S,W ) is a left Cartan-Eilenberg category with the class B ∩ F as the

class of (S,W )-cofibrant objects, for some classes of morphisms S,W .

Example 4.4.3. Let C be a Grothendieck category and (F ,B) be a small cotorsion pair in

C. Suppose that F contains a generator of finite projective dimension. Then by Proposition

3.3.16, there is a Hovey pair (⊥C(B),C(B)), (⊥(C(B)∩Acic),C(B)∩Acic). So by the above

argument, (C(B), S,W ) is a left Cartan-Eilenberg category with C(B) ∩⊥ (C(B) ∩ Acic) as

(S,W )-cofibrant objects and W is the class of quasi-isomorphisms.

Example 4.4.4. Let (F ,B) be a cotorsion pair in an abelian category with enough F and

B objects. Then we have two cotorsion pairs (dg F̃ , B̃) and (F̃ , dg B̃). If the induced

cotorsion pairs form a Hovey pair, that is, the induced cotorsion pairs are compatible,

hereditary and complete, then by the above argument, the subcategory (dg B̃, S,W ) is a left

Cartan-Eilenberg category with dg F̃ ∩ dg B̃ as (S,W )-cofibrant objects, where W is the class

of quasi-isomorphisms.

Consider the full subcategory C := C+(A) ∩ dg B̃ of C(A) for an abelian category A.

Then KC is the full subcategory of K+(C) which is the quotient category of C by the induced

homotopy relation. Let S ′ be the class of morphisms in C which are isomorphisms in KC .

Then it is precisely the class of homotopy equivalences which are in C. Since the class S ′ is

compatible with the homotopy congruence ∼ on C, the localization C[S ′−1] of the category C is

isomorphic to its homotopy category KC .

It is easy to observe that A ∈ KC if and only if A[1] ∈ KC . For any map [u] : A→ B in KC ,

there is an exact sequence

0→ B → c(u)→ A[1]→ 0

with B,A[1] ∈ KC . Since dg B̃ is closed under extensions, c(u) is in dg B̃ and due to being an

exact sequence, it is also in C+(C). So KC is a ∆-subcategory of K+(C).
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Let W ′ be the class of all quasi-isomorphisms in C. Then (C+(A) ∩ dg B̃, S ′,W ′) is a

category with strong and weak equivalences.

Theorem 4.4.5. Let (F ,B) be a cotorsion pair in an abelian category with enough F objects.

Suppose that F is a resolving class, dg B̃ ∩Acic = B̃ and every complex in C(C) has a special

dg F̃-precover. Then (C+(A) ∩ dg B̃, S ′,W ′) is a left Cartan-Eilenberg category.

Proof. The claim is to show that complexes of the form X := · · · → Xi+1 → Xi → 0 →

0 · · · in C+(F) ∩ dg B̃ are (S ′,W ′)-cofibrant objects. For it, we need to show that they are

K-projective in that category C, that is, the natural morphism

Hom(X,w) : HomKC(X,A)→ HomKC(X,B)

is an isomorphism for any quasi-isomorphism w : A→ B in C.

It is known that bounded below complexes which are in the class dg F̃ are just of the form

X := · · ·Xi+1 → Xi → 0→ 0 · · · with Xj ∈ F for each j ∈ Z. In other words,

dg F̃ ∩C+(C) = C+(F).

LetX ∈ C+(F)∩dg B̃ = dg F̃ ∩C+(C)∩dg B̃ and let T ∈ C∩Acic. Since the pair (F̃ , dg B̃)

is compatible by assumption, that is, Acic∩dg B̃ = B̃, T ∈ C+(A)∩ B̃. By definition of dg F̃ ,

HomK(C)(X,T ) = HomKC(X,T ) = 0.

Now for any quasi-isomorphism w : A → B in C, consider the distinguished triangle

associated to that morphism w

c(w)[−1] // A w // B // c(w) .
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It gives us an exact sequence

HomKC(X, c(w)[−1]) // HomKC(X,A)
Hom(X,w) // HomKC(X,B) // HomKC(X, c(w)) .

Since w is a quasi-isomorphism, its cone c(w) is exact. We already know that c(w) ∈ C. So

HomKC(X, c(w)[−1]) = HomKC(X, c(w)) = 0 and Hom(X,w) is an isomorphism. It means

that such objects X are (S ′,W ′)-cofibrant objects in C + (A) ∩ dg B̃. By Theorem 4.3.3, we

have the natural bijection

HomKC(X,B) = HomC[S−1](X,B)→ HomC[W−1](X,B) = HomDC(X,B).

Now we need to find a (S ′,W ′)-cofibrant replacement for each object A in C, that is, a

quasi-isomorphism f : F → A where F ∈ C+(F) ∩ dg B̃ . Let A ∈ C. Since (dg F̃ , B̃)

has enough projectives, we have the following exact sequence

0 // K
g // F

f // A // 0

where K ∈ B̃ and F ∈ dg F̃ . Since K is acyclic, the long exact sequence of homology implies

that f is a quasi-isomorphism. We have found a quasi-isomorphic replacement of A by an

object in dg F̃ . But it is needed to show that such a replacement can be done in our subcategory

C = C+(A) ∩ dg B̃. Obviously, F is in dg B̃ because of the fact that dg B̃ is closed under

extensions. Without lost of generality, suppose that Ai = 0 for all i < 1. Then the above short
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exact sequence is of the form

0

��

0

��

0

��

0

��
· · · // K1

//

��

K0
//

��

K−1 //

��

K−2 //

��

· · ·

· · · // F1

dF1 //

f1
��

F0

dF0 //

f0
��

F−1
dF−1 //

f−1

��

F−2
dF−2 //

f−2

��

· · ·

· · · // A1
//

��

0 //

��

0 //

��

0 //

��

· · ·

0 0 0 0

Consider the truncated complexes τ≤−1(F )

· · · // 0 // 0 // CokerdF0 = Im dF−1
� � // F−2 // F−3 // · · ·

and τ≥−1(F )

· · · // F1
// F0

// KerdF−1 = Im dF0 // 0 // 0 // · · · .

The truncated complex τ≤−1(F ) belongs to the class B̃. Indeed, each Fi is isomorphic to the

one Ki of K for i ≤ 0. And it is isomorphic to the truncated complex τ≤−1(K) of K which is

obviously still in B̃.

τ≥−1(F ) :

σ′

��

· · · // F1
//

id

��

F0
//

id

��

KerdF−1 = Im dF0 //
� _

��

0 //

��

0 //

��

· · ·

F :

σ

��

· · · // F1

dF1 //

σ1

��

F0

dF0 //

σ0

��

F−1
dF−1 //

σ−1=dF−1
��

F−2
dF−2 //

σ−2=id

��

F−3
dF−3 //

σ−3=id

��

· · ·

τ≤−1(F ) : · · · // 0 // 0 // CokerdF0 = Im dF−1
� � // F−2 // F−3 // · · ·

.
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As we noted before, F ∈ dg F̃ and τ≤−1(F ) ∈ B̃. Therefore, the natural map σ is homotopic

to the zero map, that is, there is a set of morphisms t = (ti : Fi → (τ≤−1(F ))i+1)i, with

σ = dF ◦ t+ t ◦ dF . For i = −1, σ−1 = dF−1 = t−2 ◦ dF−1. Then t−2 ◦ ι = idIm dF−1
, that is,

0 // Im dF−1
� � // F−2

dF−2 // Im dF−2 // 0

is a split exact sequence. But, since the class F is closed under direct summands, Im dF−1 ∈ F .

Considering the exact sequence

0 // KerdF−1 // F−1
d−1 // Im dF−1 // 0 .

From the fact that F is resolving, we follow that KerdF−1 ∈ F , that is, the truncated complex

τ≥−1(F ) is in dg F̃ . Now it remains to show that it is also in dg B̃. But it easily follows from

the truncation functor. In our case, τ≥−1 preserves the exactness.

0

��

0

��

0

��

0

��

0

��
τ≥−1(K) :

��

· · · // K1
//

��

K0
//

��

KerdF−1 = Im dF0 //

��

0 //

��

0 //

��

· · ·

τ≥−1(F ) :

��

· · · // F1
//

��

F0
//

��

KerdF−1 = Im dF0 //

��

0 //

��

0 //

��

· · ·

A : · · · // A1
//

��

0 //

��

0 //

��

0 //

��

0 //

��

· · ·

0 0 0 0 0

where A ∈ dg B̃ and τ≥−1(K) ∈ B̃, so τ≥−1(F ) ∈ dg B̃.

From Theorem 4.4.5, we may produce several non-trivial examples of left Cartan-Eilenberg

categories. The first one was proved in [Pas12, Proposition 4.4.1].

Example 4.4.6. LetA be an abelian category with enough projectives. Then we have a complete
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and hereditary cotorsion pair (Proj,A). The induced cotorsion pairs from (Proj,A) in C(A)

are (ProjC(A),C(A)) and (dg Proj,Acic) where dg Proj denote the class of K-projective

complexes, respectively. It is known that (dg Proj,Acic) has enough projectives. So

by Theorem 4.4.5, (C+(C), S ′,W ′) is a left Cartan-Eilenberg category with K-projective

complexes as (S ′,W ′)-cofibrant objects.

Example 4.4.7. Let R be a commutative Gorenstein ring, that is, a Noetherian ring with finite

injective dimension, idRR < ∞. Let us consider the class of Gorenstein projective modules,

GP, which will be detailed in Section 8.1. It is known that (GP,P(R)) is a complete and

hereditary cotorsion pair in R-Mod where P(R) is the class of modules with finite projective

dimension, see [Hov02, Theorem 8.3]. Then we have compatible, hereditary and complete

induced cotorsion pairs (dg G̃P, P̃(R)) and (G̃P, dgP̃(R)) by [YL14]. So by Theorem 4.4.5,

(C+(C) ∩ dg P̃(R), S ′,W ′) is a left Cartan-Eilenberg category.

Example 4.4.8. Let X be a semi-separated and quasi-compact scheme. Then the category

of quasi-coherent sheaves Qcoh(X) has a flat generator, see [TLS00, Proposition 1.1] and

[Mur07, Proposition 16]. So the class F lat(X) of flat quasi-coherent sheaves contains a

generator. And we already know that F lat(X) = Filt(S), see [Gill07, Proposition 6.4],

where S is the set of flat quasi-coherent sheaves which are < κ-generated for some regular

cardinal κ. So we have a small cotorsion pair (F lat(X),F lat(X)⊥). By Proposition 3.3.15,

we have compatible, complete and hereditary induced cotorsion pairs (dg ˜F lat(X), ˜F lat(X)⊥)

and ( ˜F lat(X), dg ˜F lat(X)⊥). So, C+(Qcoh(X)) ∩ dg ˜F lat(X)⊥ is a left Cartan-Eilenberg

category.

In [Pas12], it is proved that C+(Qcoh(P1
k)), where P1

k is the projective line, is not left

Cartan-Eilenberg category. In the next example we show that under some conditions on the

scheme, vector bundles allow to define a left Cartan-Eilenberg category by [EGPT12].

Example 4.4.9. Let X be a scheme having enough infinite-dimensional vector bundles (for

example, a quasi-compact and quasi-separated scheme that admits an ample family of invertible
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sheaves, or a Noetherian, integral, separated, and locally factorial scheme). Let F be the class

of all infinite dimensional vector bundles on X . Then by [EGPT12, Corollary 1.2], we have a

small cotorsion pair (F ,B) in Qcoh(X). So (C+(Qcoh(X))∩ dg B̃) is a left Cartan-Eilenberg

category. Note that, in general, dg B̃ 6= C(Qcoh(X)), unless X is affine.

Remark 4.4.10. All the arguments that we have done work for the dual one, right

Cartan-Eilenberg category. So their duals are true for right Cartan-Eilenberg categories, as

well.



CHAPTER FIVE

PURITY

There are several ways to define a pure monomorphism in R-Mod. More categorical ones

are given in terms of finitely presented modules, tensor product ⊗ or as the smallest proper

class which is closed under direct limits and contains splitting short exact sequences. Tensor

product is a monoidal structure in R-Mod. Then in a category which has no monoidal structure,

it doesn’t make sense to define purity through ⊗-functor. Since there is a categorical concept

of finitely presentable object for any category, it is always possible to consider morphisms with

a kind of projective property by finitely presentable objects, see [AR94, Section 2D]. But that

notion fructifies when the category is locally finitely presentable, see [Craw94]. Analogously, in

[AR94, Section 2D] λ-pure morphisms are defined for any regular cardinal λ and an important

result claims that locally λ-presentable categories have enough λ-pure subobjects, see Theorem

5.1.6. In [AR94], Adámek and Rosický give also a characterization of λ-pure morphisms in

a locally λ-presentable category, see Proposition 5.1.5. Concerning to these facts, the notion

of λ-purity provides us an essential tool in Relative Homological Algebra for more general

categories, see for example [Kra12]. We call that kind of pure morphisms as categorical pure

morphisms. The first section is about basic terminology on categorical purity and we follow up

[AR94] as a main source.

In the second section, we go one step further: what kind of relations there would be between

purities if a category both has a monoidal structure ⊗ and is locally presentable. We follow the

definition of [Fox76] in case a category has a monoidal structure. Pure monomorphisms are

− ⊗ Y -exact monomorphisms just as in R-Mod. We call that kind of pure monomorphisms as

geometrical or tensor pure monomorphisms. We focus on Grothendieck categories with closed

symmetric monoidal structures which appear abundantly: Set, R-Mod, OX-Mod, Qcoh(X)...

The key observation is that categorical pure morphisms are always geometrical pure, as well.

137



138

And our first result in this section is Theorem 5.2.6, which is about the existence of geometrical

pure-injectives preenvelopes.

The third section is focused on the category of (quasi-coherent) OX-modules over any

scheme. It is known that OX-Mod is a Grothendieck category with a symmetric closed

monoidal structure. In this special case, the information of geometrical purity in OX-Mod

is carried on stalks, see Proposition 5.3.1. A nicer characterization occurs when the domain

and codomain of a morphism in OX belong to Qcoh(X). In this case, they are determined

by sections of modules over affine open subsets, see Proposition 5.3.3. We call that kind of

purity in Qcoh(X) stalkwise-purity in Qcoh(X). We should point out that Qcoh(X) itself has

a geometrical purity since Qcoh(X) is also a closed symmetric monoidal category. We stress

that stalkwise and geometrical purities are slightly different. Stalkwise pure monomorphisms

are always geometrical pure in Qcoh(X). But the converse doesn’t hold in general because the

stalkwise one requires to remain monic under tensor product with all OX-modules whereas the

geometrical one only requires it for theOX-modules that are quasi-coherent. But this distinction

disappears when X is quasi-separated, see Proposition 7.2.8. The stalkwise purity on Qcoh(X)

is more natural in Algebraic Geometry because it is in accord with flat quasi-coherent sheaves.

For example, it plays an important role in the existence of covers by flat quasi-coherent sheaves,

see [EE05]. In this section, we discuss the relation between ℵ0-pure (categorical) and stalkwise

pure monomorphisms in Qcoh(X). We see that categorical pure morphisms are also stalkwise

pure when the category has enough finitely presentable objects.

The aim of the fourth section is to prove the existence of stalkwise pure-injective envelopes

in Qcoh(X). By Theorem 5.2.6, we conclude that every OX-module is (geometric) purely

embedded in a geometric pure-injective OX-Mod. In Theorem 5.4.6, we do it for Qcoh(X) by

using the coherator functor.
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5.1 Purity in presentable categories

We begin by recalling the definition of an accessible category.

Definition 5.1.1. [AR94, Definition 2.1] Let λ be a regular cardinal. A category C is called

λ-accessible if C has λ-directed colimits and C has a set of λ-presentable objects such that every

object in C is a λ-directed colimit of objects from that set. A category is said to be accessible if

it is λ-accessible for some regular cardinal λ.

It is clear from the definition that every locally λ-presentable category is λ-accessible. The

converse is true when a category is cocomplete, or equivalently, complete.

Proposition 5.1.2. [AR94, Corollary 2.47] A category C is locally λ-presentable if and only if

it is cocomplete and λ-accessible if and only if it is complete and λ-accessible.

Even though there are counterparts of most of results of locally presentable categories

for accessible categories, one of the differences is that a λ-accessible category may not be

µ-accessible for any regular cardinal µ ≥ λ, see [AR94, Theorem 2.11]. But it holds when ‘any

regular cardinal’ is replaced by ‘arbitrarily large regular cardinal’, that is, for each accessible

category, there is an arbitrarily large regular cardinal µ such that it is µ-accessible, see [AR94,

Corollary 2.14].

Now, we introduce the main concept of this chapter, categorical pure morphisms.

Definition 5.1.3. [AR94, Definition 2.27] Let f : A → B be a morphism in C. It is said to be

λ-pure if for any commutative diagram

A′
f ′ //

u
��

B′

v
��

g

~~
A

f // B

where A′, B′ are λ-presentable, there is a morphism g : B′ → A such that u = g ◦ f ′.
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The following properties are easy to observe:

(i) ℵ0-pure morphisms in R-Mod coincide with the usual pure monomorphisms in R-Mod.

(ii) Split monomorphisms are λ-pure for any λ.

(iii) The class of λ-pure morphisms are closed under compositions.

(iv) If f ◦ g is a λ-pure, then g is λ-pure.

(v) Every λ-pure morphism is λ′-pure for all λ′ ≤ λ.

Proposition 5.1.4. [AR94, Proposition 2.29] Every λ-pure morphism in a λ-accessible category

is a monomorphism.

Proof. Let f : A → B be a λ-pure morphism. The important point here is to be able to write

each object as a λ-colimit of λ-presentable objects. So it is enough to show that if x1, x2 : X ⇒

A are morphisms such that f ◦ x1 = f ◦ x2 with λ-presentable domain X then x1 = x2. In such

case, there is a morphism u : A′ → A withA′ λ-presentable such that xi has a factorization over

u, that is, xi = u◦x′i for some x′i : X → A′, i = 1, 2. Again, f ◦u has a factorization over some

v : B → B with λ-presentable domain B, f ◦ u = v ◦ f . Since v ◦ (f ◦ x′1) = v ◦ (f ◦ x′2), there

are morphisms v : B′ → B and h : B → B′ such that v = v ◦ h, h ◦ f ◦ x′1 = h ◦ f ◦ x′2 and B′

is λ-presentable. Since f is λ-pure, u has a factorization over h◦f , which implies x1 = x2.

Let g : X → Y be a morphism in a category C whereX, Y are λ-presentable objects for some

regular cardinal λ. Then g is a λ-presentable object in Mor(C). Indeed, if there is a morphism

(u, v) : g → colimfi for some λ-directed system {fi : Ai → Bi}i∈I in Mor(C), then there are

morphisms X → Ai and Y → Bj over which u and v have a factorization, respectively. Since

I is λ-directed, it can be found an object k ∈ I for which u and v have factorization over the
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canonical morphisms Ak → colimIAi and Bk → colimIBi, that is, there is a diagram

X
g //

u

��

u′

$$

Y

v

��

v′

zz
Ak

fk //

akzz

Bk

bk $$
colimIAi f

// colimIBi

(5.1.1)

such that u = ak ◦ u′ and v = bk ◦ v′. Then we have bk ◦ fk ◦ u′ = bk ◦ v′ ◦ f ′. Due to being

Y λ-presentable, again, there is an object t ∈ I such that the diagram 5.1.1 is converted to a

commutative one after replacing k instead of i, i.e., g → f has a factorization over fi → f .

The following proposition characterizes all λ-pure morphisms in a locally λ-presentable

category. In such a category, the class of λ-pure morphisms is a free cocompletion of split

monomorphisms with respect to λ-directed colimits. This characterization provides us an

efficient tool to prove one of our main results, that will be explained later, in Chapter (VII).

Proposition 5.1.5. [AR94, Proposition 2.30] Let C be any category. Then the following holds:

(i) If C is a λ-accessible category, then the full subcategory of Mor(C) consisting of λ-pure

morphisms is closed under λ-directed colimits and contains all sections.

(ii) If C is a locally λ-presentable category, then a morphism is a λ-pure morphism if and

only if it is a λ-directed colimit of split monomorphisms.

Proof. (i) It follows from the above arguments.

(ii) Let f be a λ-pure morphism. Then we may write f = colimIfi as a λ-directed colimit of

a system (fi : Ai → Bi)I with the canonical morphisms (ui, vi) : fi → f where Ai and
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Bi are λ-presentable for each i ∈ I . We consider pushouts of ui and fi,

Ai
fi //

ui
��

Bi

u′i
��

A
f ′i

// B′i

with the unique morphism αi : B′i → B for each i ∈ I . It is obvious that {f ′i}i∈I is a

λ-directed system with colimf ′i = f . Note that each f ′i is a split monomorphism because

f is a λ-pure morphism and f ′i is in a pushout diagram, for each i ∈ I .

Another useful result related to purity which is of our interest is the following:

Theorem 5.1.6. [AR94, Theorem 2.33] (Every λ-accessible category has enough λ-pure

subobjects.) Let C be a λ-accessible category. There exist arbitrary large regular cardinals

γB λ such that every γ-presentable subobject A of B in C is contained in a λ-pure subobject A

of B, where A is γ-presentable.

Note that if C is an abelian category and locally λ-presentable category, then a

monomorphism f : A→ B is λ-pure monomorphism if and only if the short exact sequence

0→ A→ B → Cokerf → 0

is Hom(X, -)-exact for every λ-presentable object X ∈ C.
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5.2 Purity in a closed symmetric monoidal Grothendieck category

In this section, we work on purity which comes from a closed symmetric monoidal structure.

So we begin with a series of definitions regarding to monoidal structures on a category.

Definition 5.2.1. A monoidal category (C,⊗, I, α, l, r) consists of a category C and

M1) a bifunctor ⊗ : C × C → C,

M2) a functorial isomorphism

αUVW : (U ⊗ V )⊗W ∼ // U ⊗ (V ⊗W )

(associativity isomorphism) of functors C × C × C → C,

M3) a unit object I ∈ C and functorial isomorphisms

lV : I ⊗ V ∼ // V ,

rV : V ⊗ I ∼ // V

for V ∈ C,

subject to two coherence axioms:

M4) Pentagon axiom: The following diagram

((U ⊗ V )⊗W )⊗ Z
αUVW⊗idZ

tt

α(U⊗V )WZ

**
(U ⊗ (V ⊗W ))⊗ Z
αU(V⊗W )Z

��

(U ⊗ V )⊗ (W ⊗ Z)

αUV (W⊗Z)

��
U ⊗ ((V ⊗W )⊗ Z)

idU ⊗αVWZ

// U ⊗ (V ⊗ (W ⊗ Z))
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is commutative for all U, V,W,Z ∈ C.

M5) Triangle axiom: For any U, V ∈ C, the diagram

(U ⊗ I)⊗ V

r⊗id ''

α // U ⊗ (I ⊗ V )

id⊗lww
U ⊗ V

Definition 5.2.2. A symmetry c for a monoidal category C is a natural isomorphism cUV :

U ⊗ V → V ⊗ U in such a way that the following diagrams are commutative

U ⊗ V c //

id %%

V ⊗ U
c
��

U ⊗ V

(U ⊗ V )⊗W α //

c⊗id
��

U ⊗ (V ⊗W ) c // (V ⊗W )⊗ U
α

��
(V ⊗ U)⊗W α

// V ⊗ (U ⊗W )
id⊗c

// V ⊗ (W ⊗ U)

,

I ⊗ V

l ##

c // V ⊗ I

r
{{

V

.

A monoidal category C together with a symmetry is called a symmetric monoidal category.

Some interesting results emerge when −⊗ V has a right adjoint.

Definition 5.2.3. A monoidal category C is said to be closed if each functor − ⊗ V : C → C

has a right adjoint [V,−] : C → C,

π : HomC(X ⊗ V, Z) ∼ // HomC(X, [V.Z]) .

[X, Y ] is called the internal hom of X, Y ∈ C.

[Fox76] introduced the notion of pure morphisms with respect to a monoidal structure.
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Definition 5.2.4. [Fox76] A monomorphism f : X → Y is called ⊗-pure if f ⊗ Z is a

monomorphism for all Z ∈ C.

In [Fox76], he considers locally λ-presentable categories having images of every morphism

and in which ⊗ preserves λ-directed colimits. He gets a sort of enough pure subobjects

result, see [Fox76, Theorem 3]. But the result is not enough for our necessities because a

pure-completion of a γ-generated subobject of an object is not γ-generated anymore. In such a

category, due to Proposition 5.1.5, we may observe that λ-pure morphisms are pure in the sense

of ⊗. Therefore we get a better pure-completion of γ-presentable subobjects by Theorem 5.1.6.

From now on, we focus on a locally presentable abelian category C with a closed symmetric

monoidal structure. Assume that C is locally λ-presentable. Therefore, there are two canonical

classes P and P⊗ of λ-pure and ⊗-pure short exact sequences, respectively. We generally call

categorical pure and geometrical pure for the short exact sequences which belong to P and P⊗,

respectively. As a consequence of Proposition 5.1.5, P ⊆ P⊗. Besides, C has enough ⊗-pure

subobjects, by Theorem 5.1.6.

One of the problems that we are interested in is whether there are enough injectives with

respect to P and P⊗. In case P , it is only known when λ = ℵ0. It was firstly proved

in [GM93] for a locally finitely presentable Grothendieck category, but [Her03] showed the

existence of categorical pure-injective envelopes for any locally finitely presentable category

by embedding the category, through the Yoneda functor, into a locally finitely presentable

Grothendieck category and by using the fact that it is equivalent to the subcategory of flat

functors. In this case, the category of flat functors is closed under direct limits, so it is also

closed under well-ordered direct limits. Then Proposition 3.2.15 is applicable.

Proposition 5.2.5. [Her03] Let C be a locally finitely presentable category, then every object

has a categorical pure-injective envelope.

For more general regular cardinal λ, it isn’t known the existence of injectives with respect to
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the class P . But in the following theorem, we prove that a Grothendieck category with a closed

symmetric monoidal structure ⊗ has enough injectives with respect to the proper class P⊗.

Theorem 5.2.6. Let C be a closed symmetric monoidal Grothendieck category. Then every

object can be purely embedded in a pure-injective object, that is, every object has a geometrical

pure-injective preenvelope.

Proof. Let λ be a regular cardinal for which C is locally λ-presentable. For an injective

cogenerator E of C, it is easy to observe that each [A, E ] is geometric pure-injective for all

object A ∈ C. Now the first claim is to show that an exact sequence E is geometric pure if and

only if Hom(E, [A, E ]) is exact for every λ-presentable object A of C. The necessity is clear

since [A, E ] is pure-injective. For the sufficiency, it is enough to show that E ⊗ A is exact in

C for any λ-presentable object A since ⊗ preserves any colimit. The assertion follows because

Hom(E, [A, E ]) ∼= Hom(E⊗ A, E) is exact and E is a cogenerator.

Now let X be an object of C. Consider the canonical morphism

α : X →
∏
A∈A

[A, E ]JA ,

where A is the set of representatives of λ-presentable objects and JA := Hom(X, [A, E ]). First,

note that
∏

A∈A[A, E ]JA is a geometrical pure-injective. Now let h : Y → X be a morphism

such that α ◦ h = 0. Then

Hom(h,−) : HomC(X, [A, E ])→ HomC(Y, [A, E ])

is zero for every A ∈ A. By adjunction, it means that

Hom(h⊗ idA,−) : HomC(X ⊗ A, E)→ HomC(Y ⊗ A, E)

is the zero morphism. Since E is a cogenerator, we get h⊗ idA = 0 for all A ∈ A. Then h must
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be zero, because h⊗ idI is zero. This implies that α is a monomorphism. It is immediate that α

is a ⊗-pure-monomorphism.

5.3 Purity in Qcoh(X)

Let X be a scheme and F,G be OX-modules. Recall from Section 2.4, the pair (− ⊗

−,Hom(−,−)) makes OX-Mod a closed symmetric monoidal category. Then geometrical

pure monomorphisms in OX-Mod have a special characterization.

Proposition 5.3.1. Let 0→ F
τ→ G be an exact sequence inOX-Mod. The following conditions

are equivalent:

(i) the sequence is geometrical pure exact.

(ii) For each x ∈ X the monomorphism 0→ Fx
τ→ Gx in OX,x-Mod, is pure.

Proof. (i ⇒ ii) Let M ∈ OX,x-Mod. Then ix,∗M (the skyscraper sheaf with respect to M ) is

an OX-module such that (ix,∗M)x = M . Since 0→ F
τ→ G is pure,

0→ ix,∗M ⊗ F → ix,∗M ⊗ G

is exact, that is, for each x ∈ X ,

0→ (ix,∗M ⊗ F)x → (ix,∗M ⊗ G)x

is exact in OX,x-Mod. But for each A ∈ OX,x-Mod, (ix,∗M ⊗ A)x ∼= M ⊗ Ax. Hence, from

the previous, we follow that

0→M ⊗ Fx →M ⊗ Gx

is exact in OX,x-Mod. So 0→ Fx
τ→ Gx is pure.
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(ii⇒ i) Let 0→ F
τ→ G be an exact sequence in OX-Mod (so, for each x ∈ X , 0→ Fx

τx→ Gx

is exact in OX,x-Mod). Given M ∈ OX-Mod, the induced M ⊗ F
id⊗τ−→ M ⊗ G will be a

monomorphism if, and only if, for each x ∈ X the morphism of OX,x-modules

(M⊗ F)x
(id⊗τ)x // (M⊗ G)x

is such. But, for each x ∈ X , and A ∈ OX-Mod, (M⊗A)x ∼= Mx ⊗Ax. So by (ii) it follows

that M⊗ F
id⊗τ−→M⊗ G is a monomorphism. Therefore 0→ F

τ→ G is geometrical pure.

The following proposition shows that geometrical pure monomorphisms in OX-Mod whose

domain and codomain belong to Qcoh(X) carry the purity property on sections.

Proposition 5.3.2. Let X be a scheme and F,G ∈ Qcoh(X). The following conditions are

equivalent:

(i) 0→ F
τ→ G is geometrical pure exact in OX-Mod.

(ii) 0→ F(U)
τU−→ G(U) is pure in OX(U)-Mod, for each open affine U ⊆ X .

Proof. (i ⇒ ii) Let U be an affine open subset of X and ı : U ↪→ X be the open immersion.

And let M ∈ OX(U)-Mod. Then ı∗(M̃) is an OX-module. Therefore

0→ ı∗(M̃)⊗ F → ı∗(M̃)⊗ G

is exact. But then

0→ (ı∗(M̃)⊗ F)(U)→ (ı∗(M̃)⊗ G)(U)

is exact in OX(U)-Mod, that is,

0→ ı∗(M̃)(U)⊗ F(U)→ ı∗(M̃)(U)⊗ G(U)
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is exact. Since, for each OX(U)-module A, ı∗(Ã)(U) = A, we get that 0 → M ⊗ F(U) →

M ⊗ G(U) is exact. Thus 0→ F(U)→ G(U) is pure.

(ii⇒ i) This is immediate just by observing that, for each affine open set U ⊆ X , (F⊗G)(U) ∼=

F(U) ⊗ G(U), and that a morphism τ in OX-Mod is a monomorphism if, and only if, τU is a

monomorphism in OX(U)-Mod.

Proposition 5.3.3. Let X be a scheme and F,G ∈ Qcoh(X). The following statements are

equivalent:

(i) 0→ F
τ→ G is geometrical pure exact in OX-Mod.

(ii) There exists an open covering of X by affine open sets, U = {Ui}, such that 0 →

F(Ui)
τUi−→ G(Ui) is pure in OX(Ui)-Mod.

(iii) 0→ Fx
τx→ Gx is pure in OX,x-Mod, for each x ∈ X .

Proof. (i⇒ ii) It follows from Proposition 5.3.2.

(ii ⇒ iii) Let x ∈ X . Then there exists Ui ∈ U such that x ∈ Ui = Spec(Ai), for some ring

Ai. But then the claim follows by observing that Fx = (F̃(Ui))x ∼= F̃(Ui)x and noticing that if

0→M → N is pure exact in Ai-Mod, then 0→Mx → Nx is pure exact in (Ai)x-Mod.

(iii⇒ i) By Proposition 5.3.1, we know that τ is pure in OX-Mod.

Remark 5.3.4. Note that Qcoh(X) is a monoidal category with the tensor product induced

from OX-Mod. Therefore there is also the notion of geometrical purity in Qcoh(X) by using

its own monoidal structure, that is, 0 → F → G is pure exact provided that it is M ⊗ −

exact, for each M ∈ Qcoh(X). Then a monomorphism in Qcoh(X) as in Proposition 5.3.3

is always geometrical pure in Qcoh(X). In Proposition 7.2.8, we see that in case X is

quasi-separated the converse is true, as well. This is because the direct image functor ı∗(M̃)
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preserves quasi-coherence when X is quasi-separated, in the proof of Proposition 5.3.2. So

we call stalkwise pure-exact sequence for that of Proposition 5.3.3 and geometrical (tensor)

pure-exact sequence for that of induced by monoidal structure of Qcoh(X), itself. The later one

will be the subject of Chapter (VII).

Over an affine scheme X , the category of quasi-coherent sheaves on X is equivalent to the

category OX(X)-Mod. So the following lemma can be easily obtained.

Lemma 5.3.5. Let F ∈ Qcoh(X) and U be an affine open subset of X . Then F |U is finitely

presentable in Qcoh(U) if and only if F(U) is finitely presented.

Proposition 5.3.6. [Mur2, proposition 75] Assume that X is semi-separated or concentrated.

Let F ∈ Qcoh(X) and consider the following assertions.

(i) F is a finitely presentable object in Qcoh(X).

(ii) F |U is finitely presentable in Qcoh(U) for all affine open subsets U ⊆ X .

(iii) Fx is finitely presented for each x ∈ X .

Then the implications i⇒ ii⇒ iii hold. If X is concentrated, then i⇔ ii.

Proof. (i⇒ ii) We have to show that the canonical morphism

ψ : lim−→Hom(F|U , B̃i)→ Hom(F|U , lim−→ B̃i)

is an isomorphism for any direct system {B̃i, ϕij}I of quasi-coherent OX |U -modules. We have

the following commutative diagram

Hom(F|U , B̃i) //

��

lim−→Hom(F|U , B̃i)

��

ψ // Hom(F|U , lim−→ B̃i)

��

Hom(F, ı∗(B̃i)) // lim−→Hom(F, ı∗(B̃i))
ψ′ // Hom(F, lim−→ ı∗(B̃i))

.
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Columns are isomorphisms because of the adjoint pair (resU , ı∗). For the third column we also

need to observe that, under the hypothesis on X , the direct image functor ı∗ preserves direct

limits. Since F is finitely presentable, the canonical morphism ψ′ is an isomorphism. So ψ is

an isomorphism.

(ii ⇒ iii) Fx ∼= Mp for some finitely presented R-module M and prime ideal p. Then

(iii) follows because the localization of a finitely presented R-module is a finitely presented

Rp-module.

Definition 5.3.7. (cf. [Craw94, §3]) An exact sequence 0 → F → G → T → 0 in Qcoh(X)

is called categorical pure if the functor Hom(H,−) leaves the sequence exact for every finitely

presentable quasi-coherent OX-module H.

We shall denote by Purefp the class of categorical pure short exact sequences in Qcoh(X)

and by Pure the class of stalkwise pure short exact sequences in Qcoh(X), as in Proposition

5.3.3.

Proposition 5.3.8. If Qcoh(X) is a locally finitely presentable category then categorical pure

short exact sequences are stalkwise pure exact, that is, Purefp ⊆ Pure.

Proof. Let E ≡ 0 → F → G → H → 0 be an exact sequence in Purefp. By assumption,

H = lim−→Hi where Hi is a finitely presentable object in Qcoh(X) for each i. Now, for each i,

the top row of the following pullback diagram,

Ei = 0 // F //

��

Gi //

��

Hi

��

// 0

0 // F // G //H // 0

is a categorical pure exact sequence ending with a finitely presentable object Hi. Therefore,

each Ei splits for every i. That is, E = lim−→Ei where Ei is a splitting exact sequence for every
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i. Now taking the stalk at x ∈ X , we get Ex = lim−→Eix. Then Eix is pure exact in OX,x-Mod for

each x ∈ X , so is Ex. Hence, by Proposition 5.3.3, E is a pure exact sequence in Qcoh(X).

5.4 Stalkwise pure injective envelopes in Qcoh(X)

Definition 5.4.1. A quasi-coherentOX-module M is said to be fp-pure injective (resp. stalkwise

pure injective) if for every short exact sequence 0 → F → G → H → 0 in Purefp (resp. in

Pure) the sequence 0 → Hom(H,M) → Hom(G,M) → Hom(F,M) → 0 is exact. We shall

denote by Pinjfp (resp. by Pinj) the class of all fp-pure injective quasi-coherent sheaves (resp.

the class of all stalkwise pure injective quasi-coherent sheaves). In this section, when we say

that anOX-module is pure injective, we mean that it is ‘injective’ with respect to all geometrical

pure exact sequences in OX-Mod as in Proposition 5.3.1.

Remark 5.4.2.

• If X is concentrated then, by Proposition 5.3.8, Pinj ⊆ Pinjfp.

• Clearly, every injective quasi-coherentOX-module is both fp-pure injective and stalkwise

pure injective.

Theorem 5.4.3. LetX be a concentrated scheme. Then every M ∈ Qcoh(X) admits an fp-pure

injective envelope η : M→ PEfp(M). That is, Pinjfp is enveloping.

Moreover the induced short exact sequence

0→M
η−→ PEfp(M) −→ PEfp(M)

M
→ 0

is in Purefp.

Proof. Since X is concentrated, Qcoh(X) is a locally finitely presentable Grothendieck
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category. So the result follows from [Her03, theorem 6] (see also [GM93]).

Now, we shall point out thatOX-Mod is a Grothendieck category, hence it admits an injective

cogenerator, E . We consider the coherator functor C mentioned in Section 2.4. Then C(E) is

an injective cogenerator in Qcoh(X) due to the fact that the inclusion functor ι : Qcoh(X) ↪→

OX-Mod is an exact functor with the right adjoint C.

We shall denote by M∨ the character OX-module given by M∨ = Hom(M, E). There is a

canonical map ev : M→M∨∨.

Proposition 5.4.4. Given M ∈ OX-Mod, the character OX-module M∨ is pure injective in

OX-Mod.

Proof. Let 0→ T → N→ H→ 0 be a pure exact sequence in OX-Mod. Then

Hom(N,M∨)→ Hom(T,M∨)→ 0

is exact if and only if

Hom(N ⊗M, E)→ Hom(T ⊗M, E)→ 0

is exact. But the latter follows since 0 → T ⊗M → N ⊗M is exact and E is an injective

cogenerator.

Lemma 5.4.5. Let M be a pure-injective OX-module. Then its coherator C(M) is stalkwise

pure injective in Qcoh(X).

Proof. Let 0 → F → G be a stalkwise pure exact sequence in Qcoh(X). This means that it is

pure exact in OX-Mod by Proposition 5.3.3. So we have an exact sequence

HomOX-Mod(G,M)→ HomOX-Mod(F,M)→ 0.
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Since (ι, C) is an adjoint pair where ι : Qcoh(X) ↪→ OX-Mod, it implies that

HomQcoh(X)(G, C(M))→ HomQcoh(X)(F, C(M))→ 0

is exact.

Corollary 5.4.6. Every quasi-coherent sheaf M is a stalkwise pure subobject of a stalkwise pure

injective quasi-coherent sheaf. In particular, the class of stalkwise pure injective quasi-coherent

sheaves is preenveloping.

Proof. As a consequence of Theorem 5.2.6, M can be embedded (geometric) purely into a pure

injective OX-module M′ in OX-Mod, f : M ↪→ M′. So we apply the coherator functor on

M′, C(M′). By Lemma 5.4.5, it is a stalkwise pure injective quasi-coherent sheaf. The adjoint

pair (ι, C) allows to factorize f over C(M′). Indeed, Qcoh(X) is a coreflective subcategory of

OX-Mod and M is quasi-coherent. So there is a unique morphism ϕ : M→ C(M′) over which

f is factorized. Then ϕ is a stalkwise pure monomorphism in Qcoh(X).

In order to show that the class Pinj in Qcoh(X) is enveloping, we will apply [Xu96,

Theorem 2.3.8] (this, in turn, uses [Xu96, Theorem 2.2.6]). The arguments in these proofs

are categorical and can be easily extended to our setup in Qcoh(X) by taking into account the

following lemma:

Lemma 5.4.7. For a given M ∈ Qcoh(X), the class of sequences in Pure of the form

0→M→ L→ T → 0,

varying L,T ∈ Qcoh(X) is closed under direct limits.

Proof. The argument is local and so it can be deduced from the corresponding result on module

categories (see for example [Xu96, Proposition 2.3.7]).
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Combining Lemma 5.4.7 and Corollary 5.4.6 and applying the analogue to [Xu96, Theorem

2.3.8] for the category Qcoh(X), we get

Theorem 5.4.8. Every M ∈ Qcoh(X) admits a stalkwise pure injective envelope η : M →

PE(M). That is, Pinj is enveloping.

Moreover the induced short exact sequence

0→M
η−→ PE(M) −→ PE(M)

M
→ 0

is in Pure.





CHAPTER SIX

RELATIVE HOMOLOGICAL ALGEBRA IN Qcoh(X)

This chapter is devoted to introducing some new classes in Qcoh(X) related to purity and

studying their homological properties.

Once we have a proper class P , it is a standard argument to consider ‘P-flat’ objects, that

is, objects such that every exact sequence ending with them belongs to P . There is already

a well-known notion of flat quasi-coherent sheaves, which are flat sheaves over the identity

scheme morphism on X . Equivalently, these are determined by flatness on stalks. They play

an important role in the theory of quasi-coherent sheaves because Qcoh(X) has no enough

projective objects generally. After all, in [EE05], the existence of flat covers in Qcoh(X)

was proved. Besides, Murfet and Salarian in [MS11] deal with the derived category of flat

quasi-coherent sheaves over a Noetherian scheme because it is somehow an equipollent of the

homotopy category of projectives. In the first section, we deal with P-flats with respect to

stalkwise and categorical purity. We study on the relations among these two notions of flatness

and the usual one in Qcoh(X).

In the second section we introduce and study (locally) absolutely pure sheaves in both

OX-Mod and in Qcoh(X). Remember from [Mad67] that anR-moduleA is absolutely pure if it

is pure in every module containing it as a submodule. Absolutely pure modules are also studied

with the terminology of FP-injectives ([Ste70]). It follows immediately from the definition

that A is absolutely pure if, and only if, it is a pure submodule of some injective module.

And therefore A is absolutely pure if and only if, Ext1R(M,A) = 0 for each finitely presented

R-moduleM . Since we have stalkwise pure exact sequences in categories of sheaves rather than

categorical ones, we deal with stalkwise purity to define absolutely sheaves in OX-Mod and in

Qcoh(X). Firstly, in Proposition 6.2.7 we get that over a locally coherent scheme, absolutely

pure quasi-coherent sheaves are determined by local information. It is very well-known that

absolutely pure modules and injective modules coincide if and only if R is Noetherian. In
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Proposition 6.2.11, we extend this result for a locally coherent subscheme X ⊆ Pn(R). Finally,

in Theorem 6.2.13 we prove that the class of locally absolutely pure quasi-coherent sheaves is

a covering class over a locally coherent scheme.

In the third section, we concentrate on the characterization of the product object of some

special classes. The category of quasi-coherent sheaves over any scheme is known to admit

products because it is complete. However their structure seems to be rather mysterious. For

example, Murfet in his tesis [Mur07, Remark B.7] came up with the problem whether the class

of flat quasi-coherent sheaves is closed under products over a Noetherian scheme in order to

write down internal hom in the homotopy category of sheaves K(InjX) in terms of flat sheaves.

In this section, we introduce the notion of locally torsion-free quasi-coherent sheaves over an

integral scheme which is a generalization of flat quasi-coherent sheaves. By Theorem 6.3.7,

we describe the structure of the product object of a family of locally torsion-free objects in

Qcoh(X), for an integral scheme X . Regarding to this fact, several applications relevant to

products in the class of locally quasi-coherent sheaves over an integral scheme are provided. For

example, the problem mentioned in [Mur07] was proved by [SS11] over a Dedekind scheme.

It comes here as an application, see Corollary 6.3.11. And in Corollary 6.3.8, it is shown that

the class of locally torsion-free quasi-coherent sheaves is the torsion-free class of a hereditary

torsion-theory.

Finally, in the last section, we deal with homological properties of the class of torsion-free

quasi-coherent sheaves. The fact that the class F of locally torsion-free quasi-coherent sheaves

is the right part of a torsion theory in Qcoh(X) results in that each M ∈ Qcoh(X) admits an

F-reflection and thus F is a reflective class in Qcoh(X). So, in particular, we deduce that F is

enveloping. This section is devoted to proving that the class F over an integral scheme is also

covering.
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6.1 Flat quasi-coherent sheaves

We recall that a quasi-coherentOX-module F is flat if F⊗− is exact inOX-Mod. Equivalently,

F(U) is flat as an OX(U)-module for each affine open subset U ⊆ X , or Fx is flat as an

OX,x-module for each x ∈ X . We will denote by F lat(X) the class of all flat quasi-coherent

sheaves.

Definition 6.1.1. A quasi-coherent OX-module F is called tensor flat (resp. fp-flat) if every

short exact sequence in Qcoh(X) ending in F is stalkwise pure exact (resp. is categorical pure).

We shall denote by F lat⊗ (resp. by F latfp) the class of all tensor flat quasi-coherent sheaves

(resp. the class of all fp-flat quasi-coherent sheaves).

Proposition 6.1.2. Let F ∈ Qcoh(X). If F is flat, then it is also tensor flat. In case X is

semi-separated, the converse also holds.

Proof. Let 0 → T → G → F → 0 be an exact sequence in Qcoh(X). Given an affine open

U ⊆ X , 0 → T(U) → G(U) → F(U) → 0 is also exact. Since F(U) is a flat OX(U)-module,

we deduce from Proposition 5.3.2 that F is tensor flat.

If X is a semi-separated scheme then the direct image functor ı∗ for the inclusion map ı :

U ↪→ X , where U is affine, is exact. Let F ∈ Qcoh(X) be tensor flat. We need to show that

F(U) is a flat OX(U)-module, for each affine open subset U ⊆ X . Let

0 // A // B // F(U) // 0

be an exact sequence of O(U)-modules. By the previous observation, we have an exact

sequence

0 // ı∗(Ã) // ı∗(B̃) // ı∗(F̃|U) // 0 .

If we take the pullback of the morphism ı∗(B̃) → ı∗(F̃|U) and the canonical morphism F →
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ı∗(F̃|U), we get the commutative diagram with exact rows:

0 // ı∗(Ã) //

��

H //

��

F

��

// 0

0 // ı∗(Ã) // ı∗(B̃) // ı∗(F̃|U) // 0

.

Since ı∗(Ã) and F are quasi-coherent, H is quasi-coherent. By assumption, the first row is

stalkwise pure exact, so by Proposition 5.3.2 each image under affine open subset is pure exact.

From this diagram, it can be deduced that H(U) ∼= ı∗(B̃)(U) = B. So the short exact sequence

0 // A // B // F(U) // 0 is pure, and then F(U) is a flat OX(U)-module.

Corollary 6.1.3. Assume that Qcoh(X) is locally finitely presentable (for instance if X is

concentrated). Then F latfp ⊆ F lat⊗. If X is semi-separated then F latfp ⊆ F lat⊗ = F lat.

Proof. This follows from Proposition 5.3.8 and the previous Proposition.

Remark 6.1.4. The inclusions in Corollary 6.1.3 are strict. Namely in [ES12, Corollary 4.6] it

is shown that F latfp = 0 in case X = Pn(R). In general there is a large class of projective

schemes X such that F latfp = 0 in Qcoh(X) (see [ES12, Theorem 4.4]).

6.2 Absolutely pure sheaves

An R-module A is absolutely pure if it is pure in every module containing it as a submodule. A

is absolutely pure if and only if it is a pure submodule of some injective module if and only if

Ext1R(M,A) = 0 for each finitely presented R-module M .

In this section we will study (locally) absolutely pure sheaves in both OX-Mod and in

Qcoh(X) in terms of stalkwise pure exact sequences.

Definition 6.2.1. Let (X,OX) be a scheme.
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(i) Let F be inOX-Mod. F is absolutely pure inOX-Mod if every exact sequence 0→ F →

G in OX-Mod is geometrical pure exact in OX-Mod.

(ii) Let F be a quasi-coherent sheaf on X . F is called absolutely pure in Qcoh(X) if every

exact sequence 0→ F → G in Qcoh(X) is stalkwise pure exact.

(iii) Let F be a quasi-coherent sheaf on X . F is called locally absolutely pure if F(U) is

absolutely pure over OX(U) for every affine open U ⊆ X .

Lemma 6.2.2. All these notions of locally absolutely purity of quasi-coherent sheaves and

absolutely purity in OX-Mod and in Qcoh(X) are closed under taking pure subobjects.

Proof. It follows from the fact that if f ◦ g is a pure monomorphism, for each notion of purity,

with monomorphisms f and g, then g is a pure monomorphism.

Lemma 6.2.3. Let F be an OX-module. The following are equivalent:

(i) F is absolutely pure in OX-Mod.

(ii) F |Ui is absolutely pure in OX |Ui -Mod for a cover {Ui} of X .

Proof. (i ⇒ ii) Let U ⊆ X be open. Then the extension of F |U by zero outside U , j!(F |U),

is contained in F. Since the stalk of j!(F |U) is Fx if x ∈ U and 0 otherwise, j!(F |U) is a pure

subsheaf of F in OX-Mod. So j!(F |U) is absolutely pure in OX-Mod, too.

Now let G be any OX |U -module with an exact sequence 0→ F |U→ G. Then

0→ j!(F |U)→ j!(G)

is still exact in OX-Mod. So it is pure in OX-Mod. But this means that

0→ (j!(F |U))x → (j!(G))x
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is pure for all x ∈ X . For x ∈ U , that exact sequence is equal to the exact sequence

0→ (F |U)x → (G)x and j!(F |U) |U= F |U

and (j!(G)) |U= G. That proves the desired implication.

(ii⇒ i) Let 0→ F → G be an exact sequence inOX-Mod. In order to show that it is pure exact,

we need to show that the morphism induced on the stalk is pure exact, for every x ∈ X . But the

restriction functor to open subsets is left exact and (F |U)x = Fx. So the claim follows.

Lemma 6.2.4. Let F be an OX-module. If Fx is absolutely pure for all x ∈ X then F is

absolutely pure in OX-Mod.

Proof. Let 0→ F → G be an exact sequence in OX-Mod. To be pure in OX-Mod is equivalent

to be pure at the induced morphism on the stalk for every x ∈ X . So that proves our implication.

Let X = Spec(R) be an affine scheme. The next proposition shows that in order to check

that a quasi–coherent OX-module Ã is absolutely pure, it suffices that its restrictions Ã|D(si),

i = 1, . . . , n, be absolutely pure, where ∪ni=1D(si) = X , and s1, . . . , sn ∈ R.

Proposition 6.2.5. Let R be a ring and s1, s2, . . . , sn a finite number of elements of R which

generate the unit ideal. Let A be an R-module. If Asi is absolutely pure over Rsi for every

i = 1, . . . , n then A is absolutely pure over R.

Proof. Given A ⊆ B, we want to prove the canonical morphism M ⊗A→M ⊗B is injective

for every module M . Let K = Ker(M ⊗ A → M ⊗ B). Then by our hypothesis we get

Ksi = 0 for each i = 1, . . . , n. So if x ∈ K, then sihix = 0 for some hi ≥ 0. But the set

{s1, s2, . . . , sn} generates R. So we have s1t1 + . . . + sntn = 1 for some t1, . . . , tn ∈ R. And

also (s1t1 + . . .+ sntn)hx = 0 if h > h1 + . . .+ hn − 1, i.e., x = 1.x = 1hx = 0.
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Let X = Spec(R) be an affine scheme. Now we will see that in order to check that a

quasi–coherentOX-module Ã is absolutely pure, it suffices to check that, for each P ∈ X , each

stalk M̃P is an absolutely pure OX,P -module.

Proposition 6.2.6. IfAP is absolutely pure overRP for every prime ideal P thenA is absolutely

pure over R.

Proof. Let M be a finitely presented R-module. We want to prove that

Ext1R(M,A) = 0. Since M is finitely presented,

(Ext1R(M,A))P ∼= Ext1RP (MP , AP ) = 0.

Since this is true for each prime ideals P , Ext1R(M,A) = 0. So A is absolutely pure.

Both Propositions 6.2.5 and 6.2.6 do not assume any condition on the ringR. Their converses

are not true in general. However they are if R is coherent, see [Pin05, Theorem 3.21]. So it

makes sense to define a notion of locally absolutely pure quasi-coherent sheaves over a locally

coherent scheme. A scheme (X,OX) is locally coherent provided that OX(U) is a coherent

ring, for each affine open subset U ⊆ X . Since coherence descends along faithfully flat

morphisms of rings (see [Har66, Corollary 2.1]), it follows that X is locally coherent if, and

only if, OX(Ui) is coherent for each i ∈ I of some affine open covering {UI}i∈I of X . So

over a locally coherent scheme, the next proposition states that in order to prove whether a

quasi-coherent sheaf is locally absolutely pure, it is sufficient to look at some cover by affine

subsets of X . And these show that locally absolutely purity is a stalkwise property.

Proposition 6.2.7. Let (X,OX) be a locally coherent scheme. Then the following conditions

are equivalent for a quasi-coherent sheaf F:

(i) F(U) is absolutely pure for every affine U .

(ii) F(Ui) is absolutely pure for all i ∈ I for some cover {Ui}i∈I of affine open subsets.
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(iii) Fx is absolutely pure for all x ∈ X .

Proof. We just need to prove the implications (ii ⇒ iii) and (iii ⇒ i). By [Pin05, Theorem

3.21] the localization of an absolutely pure module over a coherent ring is again absolutely

pure, so the first implication follows. For the second, Let F(U) ∼= M for an OX(U)-module

M . By assumption, F(U)P ∼= MP is absolutely pure for all prime ideal P of OX(U). Hence,

F(U) = M is also absolutely pure by Proposition 6.2.6.

The next lemma shows that the locally absolutely pure objects in Qcoh(X) on a locally

coherent scheme X are exactly the absolutely pure OX-modules which are quasi-coherent.

Lemma 6.2.8. Let X be a locally coherent scheme and F be a quasi-coherent sheaf. Then F is

locally absolutely pure if and only if F is absolutely pure in OX-Mod.

Proof. It follows by Lemma 6.2.3 and Proposition 6.2.7.

At this point, we may consider the relation between absolutely pure quasi-coherent sheaves

and locally absolutely pure quasi-coherent sheaves.

Lemma 6.2.9. Let X be a locally coherent scheme. Every locally absolutely pure

quasi-coherent sheaf is absolutely pure in Qcoh(X).

Proof. This follows from Proposition 6.2.7 and Proposition 5.3.3.

The converse of Lemma 6.2.9 is not clear in general. But it is true if X = Spec(R) is

affine and R is coherent, or X is locally Noetherian. The first case is clear since Qcoh(X) ∼=

OX(X)-Mod. For the second, let F be an absolutely pure in Qcoh(X) and E(F) be its injective

envelope in Qcoh(X). Then 0 → F → E(F) is pure exact. So, for each affine open subset

U ⊆ X , 0 → F(U) → E(F)(U) is pure exact in OX(U)-Mod. But E(F)(U) is an injective
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OX(U)-module and F(U) is a pure submodule of it. Hence F(U) is absolutely pure, for each

affine U ⊆ X . So, F is a locally absolutely pure quasi-coherent sheaf.

Proposition 6.2.10. Let X be a locally coherent scheme. If the class of injectives sheaves

in OX-Mod is equal to the class of absolutely pure sheaves in OX-Mod, then X is a locally

Noetherian scheme.

Proof. Suppose that these classes are equal. LetM be an absolutely pureOX(U)-module where

U is an affine open subset. Then the sheaf j!(M̃) obtained by extending M̃ by zero outside U

is an absolutely pure OX-module by Lemma 6.2.4. By assumption, it is injective in OX-Mod.

So, its restriction (j!(M̃)) |U= M̃ is injective in OX |U -Mod. Since M̃ is quasi-coherent,

it is injective in Qcoh(U) which implies that M is injective OX(U)-module. So OX(U) is a

Noetherian ring and hence X is a locally Noetherian scheme.

Recall that a closed subscheme X of Pn(R) is given by a quasi-coherent sheaf of ideals, i.e.

we have an ideal Iv ⊆ R[v] for each v withR[w]⊗R[v]Iv ∼= Iw when v ⊆ w. This means Iv → Iw

is the localization by the same multiplicative set as above. But then R[v]/Iv → R[w]/Iw is also

a localization. So, by abusing the notation, we shall also denote by R the structural sheaf of

rings attained to X .

Proposition 6.2.11. A closed subscheme X ⊆ Pn(R) which is locally coherent (for instance if

R is coherent) is locally Noetherian if and only if locally absolutely pure quasi-coherent sheaves

are locally injective.

Proof. “If” part is clear. Indeed, if a scheme is locally Noetherian, then all classes of locally

absolutely pure, absolutely pure, locally injective and injective quasi-coherent sheaves are equal,

by [Hart66, II, Proposition 7.17, Theorem 7.18].

For the “only if” part, suppose that the class of locally injective and locally absolutely

pure quasi-coherent sheaves are equal. As given in Example 2.4.2, we deal with a cover
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{D+(
∏

i∈v xi)}v⊆{1,...,n} of basic affine open subsets of X since locally absolutely purity

is independent of choice of the base by Proposition 6.2.7. Let M be an absolutely pure

R[v]-module for some v ⊆ {1, . . . , n}. By taking its direct image ι∗(M̃), we get a locally

absolutely pure quasi-coherent sheaf on X . Indeed, ι∗(M̃)(D+(
∏

i∈w xi)) = S−1vwM(v) for

v ⊆ w is absolutely pure R[w]-module by [Pin05, Theorem 3.21] and ι∗(M̃)(D+(
∏

i∈w xi)) =

M̃(D+(
∏

i∈w xi) ∩D+(
∏

i∈v xi)) as R[w]-module for v * w. But

M̃(D+(
∏
i∈w

xi) ∩D+(
∏
i∈v

xi)) = S−1v(v∪w)M(v)

is absolutely pure asR[(v∪w)]-module and sinceR[(v∪w)] = S−1v(v∪w)R[w], it is also absolutely

pure as R[w]-module, by [Pin05, Theorem 3.20]. By assumption ι∗(M̃) is locally injective, that

is, (ι∗(M̃))(D+(
∏

i∈v xi)) = M is injective. So, R[v] is Noetherian, by [Meg70, Theorem 3].

This implies that X is locally Noetherian.

Note that the class of locally absolutely pure quasi-coherent sheaves over a locally coherent

scheme is closed under direct limits and coproducts since absolutely pure modules over coherent

rings are closed under direct limits, [Pin05, Proposition 2.4].

The next proposition, which will be used several times in the rest of chapter, is valid for any

scheme.

Proposition 6.2.12. [EE05, Proposition 3.3] Let X be any scheme. Let Q = (V,E) and R be

its quiver and ring representation mentioned in Section 2.4. Let F be a quasi-coherent sheaf. Let

κ be an infinite cardinal such that |R(v)| ≤ κ and such that max |E|, |V | ≤ κ. Let Mv ⊆ F(v)

be subsets with |MU | ≤ κ for all v ∈ V . Then there is a stalkwise pure quasi-coherent subsheaf

F′ ⊆ F with Mv ⊆ F′(v) for all v ∈ V and |F| ≤ κ.

Theorem 6.2.13. Let X be a locally coherent scheme. The class of locally absolutely pure

quasi-coherent sheaves is a covering class.
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Proof. First note that over a coherent ring, a quotient of an absolutely pure module by a pure

submodule is again absolutely pure [Pin05, Proposition 4.2]. So, using that, we can say that

a quotient of a locally absolutely pure quasi-coherent sheaf by a stalkwise pure quasi-coherent

subsheaf is again locally absolutely pure.

Let λ be the cardinality (see Section 2.4) of the scheme X . By Proposition 6.2.12, there

is an infinite cardinal κ such that for every quasi-coherent sheaf can be written as a sum of

quasi-coherent subsheaves of type κ. In fact, every subsheaf with type κ of a quasi-coherent

sheaf F can be embedded in a quasi-coherent subsheaf of type κ which is stalkwise pure in F.

Let S be the set of locally absolutely pure quasi-coherent sheaves of type κ. By combining

this with the fact that the class of locally absolutely pure quasi-coherent sheaves is closed under

taking quotient by a stalkwise pure quasi-coherent sheaf, it follows that each locally absolutely

pure quasi-coherent sheaf admits an S-filtration. So, every locally absolutely pure sheaf is

filtered by the ones of type κ.

On the other hand, since absolutely pure modules are closed under extensions and direct

limits over a coherent ring, every quasi-coherent sheaf on a locally coherent scheme possessing

an S-filtration is also locally absolutely pure quasi-coherent. So, the class of locally absolutely

pure quasi-coherent sheaves is equal to the class Filt(S) of all S-filtered quasi-coherent sheaves.

So, that class is precovering by Proposition 3.2.17. Being closed under direct limits also implies

that the class of locally absolutely pure quasi-coherent sheaves is covering.

6.3 Locally torsion-free quasi-coherent sheaves

Definition 6.3.1. A torsion theory for an abelian category C is a pair (T ,F) of classes of objects

C such that

(i) Hom(T, F ) = 0 for all T ∈ T , F ∈ F .
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(ii) If Hom(C,F ) = 0 for all F ∈ F , then C ∈ T .

(iii) If Hom(T,C) = 0 for all T ∈ T , then C ∈ F .

In that case, T is called a torsion class while F is called a torsion-free class.

In fact, being a torsion class in an abelian category is equivalent to being closed under

quotient objects, coproducts and extensions. And its dual form is valid for a torsion-free class.

A torsion theory (T ,F) in an abelian category C is called hereditary if the torsion class is

closed under subobjects, or equivalently, in case C is a Grothendieck category, the torsion-free

class is closed under injective envelopes. And it is called of finite type when its torsion-free

class is closed under direct limits. The prototypical example of a hereditary torsion theory of

finite type comes from the category of modules over an integral domain where T is the class of

all torsion modules and F is the class of all torsion-free modules.

Note that if a scheme X is integral then all its restriction maps OX(V ) → OX(U) between

any open subsets U ⊆ V are monomorphisms, see [GW10, Proposition 3.29]. From now on all

schemes are assumed to be integral.

We start this section by proving that locally torsion quasi–coherent sheaves are easily shown

to induce a torsion theory in Qcoh(X):

Proposition 6.3.2. Let T be the class of quasi-coherent sheaves over X whose modules of

sections over all affine open sets are torsion. Then T is a torsion class of a hereditary torsion

theory in Qcoh(X).

Proof. Since T is closed under extensions, quotients, coproducts and subobjects, it is the torsion

part of a hereditary torsion theory (T ,FT ) where FT consists of the M ∈ Qcoh(X) having just

the zero morphism from each element of T .
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Now let F be the class in Qcoh(X) of locally torsion-free quasi-coherent sheaves, that is,

F ∈ F whenever F(U) is torsion-free OX(U)-module, for each open set U in X . First of all,

we claim that being locally torsion-free is a Zariski-local notion in Qcoh(X).

Lemma 6.3.3. Let R be an integral domain and M be an R-module. Then the following are

equivalent:

(i) M is torsion-free.

(ii) MP is torsion-free as RP -module for each prime ideal P .

(iii) Mm is torsion-free as Rm-module for each maximal ideal m.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are easy. For (iii) ⇒ (i), assume that there is a

nonzero torsion element x ∈ M . Then the ideal AnnR(x) = {r ∈ R | rx = 0} is neither

zero nor R since x is not zero. Consider a maximal ideal m containing AnnR(x). Then x
1

is not

zero in Mm. But r
1
.x
1

= 0 for any nonzero r ∈ AnnR(x). By the assumption, r
1

= 0 in Rm, that

is, tr = 0 for some t ∈ R\m. But since r 6= 0 and R is an integral domain, t = 0 which yields

a contradiction.

Proposition 6.3.4. Let F be a quasi-coherent sheaf over X . Then the following are equivalent:

(i) F ∈ F .

(ii) There is a cover U of X containing affine open subsets such that F(U) is torsion-free for

all U ∈ U .

(iii) Fx is torsion-free for each x ∈ X .

Proof. (i⇒ ii) is clear.
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(ii⇒ iii). Let x ∈ X . Since U is a cover of X with affine open sets, there is an affine open set

U ∈ U containing x. Since F is quasi-coherent, Fx = MP , where F(U) = M is torsion-free

and P is the prime ideal of OX(U) corresponding to x ∈ U . This proves (iii).

(iii ⇒ i). Let U ′ be any affine open subset of X and P be any prime ideal of OX(U ′). By

assumption, Fx = (F |U ′)x = F(U ′)P is torsion-free, where x ∈ U ′ corresponding to the

prime ideal P . Hence Lemma 6.3.3 implies that F(U ′) is torsion-free. Note that the set of

affine open subsets of X constitutes a base for the scheme X . Let V be any open subset of

X and f be a nonzero section of F(V ) such that r.f = 0 for some r ∈ OX(V ). Since f is

nonzero, by sheaf axioms, there is a covering {Ui}I of affine open sets such that resV Ui(f) 6= 0

for some i ∈ I , where resV Ui : F(V ) → F(Ui) is the restriction map of F for Ui ⊆ V .

But resV Ui(r.f) = r|Ui . resV Ui(f) = 0. Here |Ui is the restriction map OX(V ) → OX(Ui).

Since F(Ui) is torsion-free, r|Ui = 0. But X is an integral scheme, so all its restriction maps

between any open subsets are monic. This implies that r = 0. Hence we conclude that F(V ) is

torsion-free for any open subset V ⊆ X .

We focus now on studying the quasi–coherent sheaves in the class F . It is not difficult to see

that F is closed under subobjects and extensions. But proving that F is closed under products

requires more work and will be the main goal of this section. We will show in Corollary 6.3.8

that the class F induces a torsion theory (TF ,F) on Qcoh(X). We start with the following:

Lemma 6.3.5. If F is a quasi-coherent sheaf over X which is in the class F , then its restriction

maps between affine open subsets are monomorphisms.

Proof. Let V ⊆ U be affine open subsets and resUV : F(U) → F(V ) be its restriction map

between these affine open subsets. Suppose 0 6= x ∈ F(U) such that resUV (x) = 0. Remember

that OX(V ) ⊗OX(U) F(U) and F(V ) are isomorphic by the map idOX(V )⊗OX(U) resUV . Then

(idOX(V )⊗OX(U) resUV )(1 ⊗ x) = 0. This implies that 1 ⊗ x = 0 in OX(V ) ⊗OX(U) F(U).

Since OX(V ) is flat as OX(U)-module, we infer from [Ste75, Proposition 8.8, I] that there
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exists a matrix An×1 with coefficients from OX(U) and a vector S1×n with coefficients from

OX(V ) such that A.x = 0 and 1 = S.A. But since x is torsion-free and nonzero, A = 0. This

contradicts to 1 = S.A.

By Lemma 6.3.5 and the sheaf axiom, we can deduce that for every non-empty affine open

subset U ⊆ X and for every affine open covering U =
⋃
i Ui, we have F(U) =

⋂
i F(Ui).

We will analyze the interaction between the product in Qcoh(X) and the product in Sh(X)

for objects which lie in F .

Proposition 6.3.6. Let {Fi}I be a family of locally torsion-free quasi-coherent sheaves over X .

Its product F in Qcoh(X) is a subsheaf of
∏

I Fi.

Proof. By the universal property of the product object, there is a unique morphism α : F →∏
Fi. Then we need to show that Kerα is the zero sheaf. Note that (Kerα)(U) = KerαU for

every open subset U . Firstly, we will prove that Kerα ∈ Qcoh(X). For each affine open subsets

V ⊆ U , let us consider the following diagram

0

��

0

��
KerαU

��

// KerαV

��
F(U)

resUV //

αU
��

F(V )

αV
��∏

Fi(U) �
�

(resiUV )I

//
∏

Fi(V )

where resiUV is the restriction map of Fi between affine open subsets V ⊆ U for all i. The last

morphism of the diagram, (resiUV )I :
∏

Fi(U)→
∏

Fi(V ), is monic because by Lemma 6.3.5

each morphism resiUV is monic for all i ∈ I and any direct product of monomorphisms is a
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monomorphism. Columns are exact, as well. If we tensorize it byOX(V ), we get the following

diagram

0

��

0

��
OX(V )⊗OX(U) KerαU

��

f // KerαV

��
OX(V )⊗OX(U) F(U)

g //

id⊗αU
��

F(V )

αV

��
OX(V )⊗OX(U)

∏
Fi(U) �

�

id⊗(resiUV )I

//
∏

Fi(V ).

Since OX(V ) is flat as OX(U)-module, columns remain exact and id⊗(resiUV )I is a

monomorphism. The morphism g := idOX(V )⊗OX(U) resUV is an isomorphism by the

quasi-coherence of F. Then f is an isomorphism. This implies that Kerα is zero. Indeed, the

morphism Kerα ↪→ F → Fi is the zero morphism for each i ∈ I . The universal property of the

product F in Qcoh(X) implies that there is a unique morphism Kerα→ F. So Kerα = 0.

Theorem 6.3.7. The product F of a family {Fi}i∈I of torsion-free quasi-coherent sheaves in

Qcoh(X) is the largest quasi-coherent subsheaf of
∏

i∈I Fi. More concretely, it is of the form

F =
∑

M∈Qcoh(X)
M⊆

∏
i∈I Fi

M.

Proof. By Proposition 6.3.6, we know that F is a quasi-coherent subsheaf of
∏

i∈I Fi. Now, let

F′ be a quasi-coherent subsheaf in
∏

i∈I Fi. Consider the morphism

F′ �
� //

∏
i∈I Fi

πi // Fi

for each i ∈ I . By the universal property of products, there is a unique morphism f : F′ → F

such that (πi |F ′) = (πi |F) ◦ f . But for an open subset U of X , the projection map πi(U) :∏
i∈I Fi(U)→ Fi(U) is the canonical one. So we can deduce that the morphism f that we have



173

obtained is an inclusion. This proves that F is the largest quasi-coherent subsheaf of
∏

i∈I Fi. It

implies that

F =
∑

M∈Qcoh(X)
M⊆

∏
i∈I Fi

M.

Corollary 6.3.8. The class F in Qcoh(X) is closed under arbitrary products. In particular it

induces a torsion theory of finite type in Qcoh(X).

Proof. F is closed under direct limits and under arbitrary products in view of Proposition 6.3.6.

Since it is also closed under subobjects and extensions it is the right part of a torsion theory of

finite type (TF ,F) in Qcoh(X).

Now let us consider the torsion theory (T ,FT ) provided by Proposition 6.3.2. Then it is easy

to see that F ⊆ FT . But the reverse inclusion is not known yet. If we restrict ourselves to the

case of a quasi-separated scheme X , we can say something more. In order to show the equality

over a quasi-separated scheme X , we will use the other torsion theory induced by Corollary

6.3.8. Recall that the torsion theory obtained from the class F in Qcoh(X) is the pair (TF ,F).

We prove the equality TF = T in the following.

Corollary 6.3.9. LetX be a quasi-separated scheme. Then the pair (T ,F) constitutes a torsion

theory in Qcoh(X).

Proof. The claim is to show that T = TF where (TF ,F) is the torsion theory obtained from

Corollary 6.3.8. As a first step, we will show that the direct image functor on U ⊆ X , where

U is affine, preserves locally torsion-freeness. Let M be a torsion-free OX(U)-module for

an affine subset U . Then the quasi-coherent sheaf M̃ associated to M is locally torsion-free

quasi-coherent OX |U -module by Lemma 6.3.3 and Proposition 6.3.4.
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Now, if we consider the direct image functor for the inclusion ι : U ↪→ X , then

ι∗(M̃) is again a locally torsion-free quasi-coherent OX-module. Recall that if a scheme is

quasi-separated, then a direct image functor ι∗ for any inclusion ι : U ↪→ X with affine open

subset U preserves quasi-coherence. For any open subset V ⊆ X , ι∗(M̃)(V ) = M̃(V ∩ U)

as OX(V )-module where OX(V ) ↪→ OX(V ∩ U) . But M̃(V ∩ U) is torsion-free as

OX(V ∩ U)-module since V ∩ U ⊆ U . Then it is also torsion-free as OX(V )-module.

Quasi-coherence of ι∗(M̃) follows from the fact that X is quasi-separated.

Now let T ∈ TF . We need to show that the module of sections of T over each affine open set

is torsion. Let U be an affine open set and T(U) → M be any morphism of OX(U)-modules

where M is torsion-free. Then we have a morphism T|U → M̃ in Qcoh(U). Applying the

direct image functor ι∗, we get a morphism ι∗(T|U) → ι∗(M̃) in Qcoh(X), where ι∗(M̃) is

locally-torsion free. But there is a canonical morphism T → ι∗(T|U) which is the identity for

all open subsets U ′ ⊆ U . So the composition T → ι∗(T|U) → ι∗(M̃) is zero by assumption.

It gives us that the morphism T(U) → M is zero. So T is a locally torsion quasi-coherent

sheaf.

Corollary 6.3.10. The product F of a family {Fi}i∈I of flat quasi-coherent sheaves in Qcoh(X)

is the largest quasi-coherent subsheaf of
∏

i∈I Fi. More concretely, it is of the form

F =
∑

M∈Qcoh(X)
M⊆

∏
i∈I Fi

M.

Proof. This follows by noticing that every flat quasi–coherent sheaf is in fact locally

torsion-free.

Now we get another proof of [SS11, Proposition 4.16].

Corollary 6.3.11. Let X be a Dedekind scheme. The class F lat(X) of flat quasi–coherent

sheaves is closed under taking products in Qcoh(X).
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Proof. Let {Fi}i∈I be a family of flat quasi–coherent sheaves. By Corollary 6.3.10, the product

object F of the family {Fi}i∈I in Qcoh(X) is a subsheaf of
∏

I Fi whose modules of sections

over open subsets are torsion-free. Hence F ∈ F . But for a Dedekind scheme the classes F and

F lat(X) coincide, so we are done.

6.4 Torsion-free covers in Qcoh(X)

In the previous Corollary 6.3.8 we showed that the classF of locally torsion-free quasi–coherent

sheaves is the right part of a torsion theory in Qcoh(X). One immediate consequence of this is

that each M ∈ Qcoh(X) admits an F-reflection and thus F is a reflective class in Qcoh(X).

So, in particular, we deduce that F is enveloping.

This section is devoted to proving that the class F is also covering, that is, each M ∈

Qcoh(X) admits an F-cover.

Let κ be an infinite regular cardinal such that κ >| OX(U) | for each affine open subset

U ⊆ X and κ >| H |, where H := {resUV | for affine subsets V ⊆ U ⊆ X}. See Section 2.4

for the cardinality of a quasi-coherent sheaf and κ-type quasi-coherent sheaves.

Lemma 6.4.1. Let S be the set of isomorphism classes of quasi-coherent sheaves in F of type

κ. Then F = Filt(S).

Proof. Let F ∈ F and x ∈ F(U) for some affine open subset U . By Proposition 6.2.12, there

is a quasi-coherent pure subsheaf G ⊆ F of type κ containing x. Here, the purity is considered

in the sense of tensor product. It easy to check that it has the global and local properties on

affine open subsets, i.e., G(U) is a pure submodule of F(U) for each affine open subset U . This

implies that rG(U) = rF(U) ∩ G(U) for all r ∈ O(U), and so F(U)/G(U) is torsion-free for

all affine open subsets U . Therefore F/G ∈ F .
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By transfinite induction, we will construct an S-filtration for each object in F . For

F ∈ F , consider µ =| F | and F0 = 0, F1 := G obtained as above. For α < µ, if

x+ Fα(U) ∈ (F/Fα)(U) = F(U)/Fα(U), there is a pure quasi-coherent subsheaf Fα+1/Fα of

type κ containing x + Fα. For a limit ordinal β ≤ µ, Fβ := lim−→α<β
Fα. Then, (Fα | α ≤ µ) is

an S-filtration for F.

From that construction, we get that F ⊆ Filt(S). Now, let (Mα | α ≤ λ) be an S-filtration

of a quasi-coherent sheaf M. We have that M1 = M1/M0 = M1/0 is in F . And now if we

suppose that Mα ∈ F , for α < λ, we have a short exact sequence

0 −→Mα −→Mα+1 −→Mα+1/Mα −→ 0,

where Mα,Mα+1/Mα are in F . Therefore, Mα+1 is also in F . Since F is closed under direct

limits, Mα is locally torsion-free whenever α is a limit ordinal. This implies that Mλ = M is

locally torsion-free. Hence F = Filt(S).

We will adapt the arguments of [Eno12] to the category Qcoh(X) to infer in Theorem 6.4.7

thatF is covering. Since the set of affine open subsets ofX is a base of the scheme and uniquely

determines quasi–coherent sheaves over it, we will often use the images of a quasi–coherent

sheaf on affine open subsets.

Given a filtration (Fα)α≤κ and (F ′α)α≤κ of F ⊆ F′, respectively, we say that the filtration

(F ′α)α≤κ of F′ is compatible with the one (Fα)α≤κ of F if (Fα)α≤κ is obtained by restricting

(F ′α)α≤κ to F, that is, F ′α ∩ F = Fα for all α ≤ κ.

Lemma 6.4.2. Assume that (Fα)α≤κ is a filtration of F in Qcoh(X). If | F′/F |< κ where

F ⊆ F′ ∈ Qcoh(X), then there is a filtration (F′α)α≤κ which is compatible with the one of F

and except for possibly one β < κ, Fα+1/Fα is isomorphic to F′α+1/F
′
α and Fβ+1/Fβ is a direct

summand of Fβ+1/Fβ with the complement F′/F.
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Proof. For each affine open U ⊆ X , SU denotes the OX(U) submodule of F′(U) which is

generated by representatives of F′(U)/F(U). By assumption, | SU |< κ. We can complete these

subsets to a quasi-coherent subsheaf of F′, say S, containing these submodules SU ⊆ S(U) and

with the cardinality < κ.

We know that there exists βU < κ for each affine U ⊆ X such that S(U) ∩ Fβ = S(U) ∩ F

since κ is a regular cardinal and is the length of the filtration. Consider β := ∪UβU . Now

define the new filtration as F′α = Fα for α ≤ β, and F′α = Fα + S for α > β. Since these are

quasi-coherent, (F′α+1/F
′
α)(U) = F′α+1(U)/F′α(U) and (Fα+S)(U) = F(U)+S(U) for affine

open subsets and by using the fact S(U) ∩ Fα(U) = S(U) ∩ F(U) for each α ≥ β, the claims

mentioned in the lemma follow.

The next corollary says that in Qcoh(X) it is possible to convert a filtration of any length

and whose quotient between consecutive factors is bounded by κ into a filtration with κ-length.

Recall that for a given class C, Sum(C) is the class of direct sums of objects which are

isomorphic to some in C.

Corollary 6.4.3. Let C be a class of quasi-coherent sheaves with cardinality < κ. If a

quasi-coherent sheaf F has a C-filtration, then it has a Sum(C)-filtration of length κ.

Proof. It easily follows by making transfinite induction on the length of the given filtration and

by using Lemma 6.4.2.

Let F′ ∈ Sum(C) with a given direct sum decomposition F′ = ⊕i∈INi such that each Ni

is isomorphic to some object in the class C. As defined in [Eno12] for modules, we call a

quasi–coherent subsheaf F ⊆ F′ to be a nice subsheaf relative to this direct sum decomposition

if F = ⊕j∈JNj for some subset J ⊆ I . And F is a nice subsheaf of F′ ∈ Filt(Sum(C)) if, when

we give F the induced filtration (Fα)α≤σ, the image of the canonical map Fα+1/Fα → F′α+1/F
′
α
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is a nice subsheaf of F′α+1/F
′
α relative to the given direct sum decomposition of F′α+1/F

′
α for

each α < σ.

Lemma 6.4.4. Let F be a quasi–coherent sheaf and M ∈ Sum(F). Assume that we have

a morphism f : M → N in Qcoh(X). Then there exists a nice quasi-coherent subsheaf

T contained in Ker(f) relative to a direct sum decomposition of M ∈ Sum(F) such that

|M/T |≤| F ||Hom(F,N)|.

Proof. Note that M = ⊕i∈IFi, where Fi = F for each i ∈ I . Then the morphism f is of

the form (fi)i∈I , where fi : Fi → N for each i ∈ I . Now, we define an equivalence relation

on I for the fixed morphism f = (fi)i∈I as follows: i ∼ j if and only if fi = fj . If J is

a subset of I which is representatives of equivalence classes, we define the subpresheaf F′i of

M for each i ∈ I\J with j ∈ J and i ∼ j such that F′i(U) includes sections, on each open

subset U ⊆ X , having x ∈ F(U) in the i’th component, −x in the j’th one and 0 in the others.

This subpresheaf is isomorphic to Fi(U). So it is a quasi-coherent sheaf which is isomorphic

to Fi. And also fU(F′i) = 0 for each i ∈ I\J and for each affine open subset U ⊆ X . Then

T := ⊕i∈I\JF′i ⊆ Kerf . The exact sequence

0 // (⊕i∈I\JF′i)(U) �
� //M(U) = (⊕i∈IFi)(U)

hU // (⊕i∈JFi) // 0 ,

where the map hU((xi)i∈I) = (yj)j∈J , yj =
∑

i∈I
i∼j

xi, is splitting since the map t which is

defined on each affine subset U ⊆ X as tU : M(U)→ (⊕i∈I\JF′i)(U), tU(xi)i∈I = (yi)i∈I such

that yi = xi for each i ∈ I and yj =
∑

i∈I\J
i∼j

xi for each j ∈ J , is compatible with restriction

maps and gives us the identity map when composed with the inclusion map from (⊕i∈I\JF′i)(U).

Therefore, M ∼= (⊕i∈JFi)⊕ (⊕i∈I\JF′i). So, the quasi–coherent subsheaf T = ⊕i∈I\JF′i is nice

in M relative to some direct sum decomposition in Sum(F). Finally, | J |≤| Hom(F,N) |

implies that | ⊕i∈JFi |=|M/T |≤| F ||Hom(F,N)|.

Lemma 6.4.5. If M ∈ Sum(F) and ε := 0 // N // T
f //M // 0 is an exact

sequence in Qcoh(X), then it is isomorphic to an exact sequence 0 → N → T′ ⊕ V →
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M′ ⊕ V→ 0 where V is a nice quasi–coherent subsheaf of M and |M/V |≤| F ||Ext(F,N)|

Proof. Suppose M = ⊕i∈IFi where Fi = F for all i ∈ I . Then for each i ∈ I , we can

consider the quasi–coherent sheaf associated to the one defined on affine open subsets U ⊆ X

as f−1(Fi)(U) = f−1U (Fi(U)) with the map fU : f−1U (Fi(U)) → Fi. Note that this assignment

gives rise to a well-defined quasi–coherent sheaf, as it satisfies both the cocycle condition and

the quasi–coherent condition. Indeed, we have a commutative diagram

0 // N //

��

f−1(Fi) //
� _

��

Fi //
� _

��

0

0 // N // T // ⊕i∈IFi // 0

.

Now, as we did before, we define an equivalence relation on I as i ∼ j if and only if there exists

a commutative diagram morphism

0 // N //

id

��

f−1(Fi) //

hij
��

Fi = F //

id

��

0

0 // N // f−1(Fj) // Fj = F // 0

.

Consider the set J of representatives of equivalence classes. Then, for each i ∈ I\J , we define

a quasi–coherent subsheaf Vi of M as follows: for each affine open subsets U ⊆ X , Vi(U)

consists of elements from M(U) = ⊕IFi(U) having cU in i’th and −cU in j’th component,

where cU ∈ F(U) and 0 for others, and where j ∈ J with j ∼ i. It is easy to see that Vi is

isomorphic to Fi. In fact, for a fixed i0 ∈ I\J , we define a map tU : (⊕IFi)(U) = ⊕IFi(U)→

Vi0(U) such that tU((ciU)i∈I) = (c′iU)i∈I where c′i0U = ci0U , c′jU = −c′i0U , where j ∈ J and j ∼ i0,

and c′iU = 0. Then, tU ◦iU = id for each affine set U . This map is compatible with the restriction

maps on every affine open subsets V ⊆ U ⊆ X . So it can be extended to ⊕IFi. Finally, Vi0 is

a direct summand of ⊕ICi, for each i0 ∈ I .

Now, we define a quasi–coherent sheaf f−1(Vi) for each i ∈ I\J with j ∼ i and j ∈ J such
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that

(f−1(Vi))(U) :=

f−1U (Vi) = {au + bu | au ∈ f−1U (Fi(U)), bu ∈ f−1U (Fj(U)) and − πifU(au) = πjfU(bu)}.

For each affine U and i ∈ I\J , we have a commutative diagram with exact rows

0 // N(U)
ιu //

��

(f−1(Vi))(U)
f //

� _

��

Vi(U) //
� _

��

0

0 // N(U) // T(U) // ⊕i∈IFi(U) // 0

.

Now, for each affine set U , we can define the morphism given by σU : (f−1(Vi))(U)→ N(U),

σU(aU + bU) := (hij)U(aU) + bU . Then σU is compatible with restriction maps, and we have

σU ◦ ιU = idN(U), that is, the first row splits for each affine set U . Hence Vi has an isomorphic

image which is a direct summand in f−1(Vi). Since Vi is also a direct summand in M, we can

deduce that Vi has an isomorphic image in T, which is a direct summand. Combining all of

them and considering the quasi–coherent subsheaf V := ⊕i∈I\JVi of M, we identify it with its

isomorphic image in T. So, the original exact sequence ε is reduced to the desired one. And

also M/V ' ⊕j∈JFj , so the claim on the cardinality follows.

Now if we focus on the class F of locally torsion-free quasi-coherent sheaves, we can

combine all previous results to infer the following:

Lemma 6.4.6. Let λ be a cardinal. There is a cardinal µ such that for each morphism f : M→

N where M ∈ Filt(S) and | N |≤ λ there is a quasi–coherent subsheaf T of M contained in

Kerf such that F/T ∈ Filt(S) and | F/T |≤ µ.

Proof. Using Corollary 6.4.3, Lemma 6.4.4 and 6.4.5, we can apply a transfinite induction on

κ mentioned in Lemma 6.4.1 to find a cardinal as done in [Eno12, Theorem 5.1].
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Theorem 6.4.7. Each quasi-coherent sheaf over X has an F-cover.

Proof. Let N be a quasi-coherent sheaf and λ be the cardinality of N. By Lemma 6.4.1 and

Lemma 6.4.6, there is a cardinal µ such that, for each morphism f : F → N where F ∈ F ,

there is a quasi-coherent submodule T of F contained in Kerf with F/T ∈ F of type µ. Then

M :=
⊕
T∈S′

h∈Hom(T,N)

Th,

with the canonical morphism σ : M → N, is a precover of N (where S ′ is the isomorphism

class of locally torsion-free quasi-coherent sheaves of type µ). Finally, since F is closed under

direct limits, by [Xu96, Theorem 2.2.12] (whose proof is valid for any Grothendieck category,

so in particular for Qcoh(X)) M has an F-cover.

Remark. Theorem 6.4.7 may be also derived from Lemma 6.4.1, Proposition 3.2.17 and

Proposition 3.1.2. It could be also deduced from Proposition 3.2.20 by using the same argument

as the proof of Lemma 6.4.1 and the fact that the class F is closed under directed colimits.





CHAPTER SEVEN

PURE DERIVED CATEGORY OF MONOIDAL CATEGORIES

The goal of this chapter is to define the pure derived category of the category of

quasi-coherent sheaves Qcoh(X). Regarding to this, in the first section, we recall some basic

terminology and notions on exact categories. This section enjoys the survey article of [Büh10]

on exact categories. An exact category, shortly, is a category where we are allowed to do

Homological Algebra by means of Yoneda extensions. It includes some short exact sequences

which makes the category resembles an abelian category. And the theory on abelian categories

can be built for exact categories, as well. Besides, we recall the notion of Grothendieck type,

introduced by [SS11], which allows to show the existence of enough injectives relative to an

exact structure, just as in Grothendieck categories. In order to do so, we put all the necessary

conditions on the exact structure, such as, possessing a generator, closure under well ordered

direct limits and all objects are small.

Concerning to locally λ-presentable categories, introduced in Chapter (II), there is a

proper class P projectively generated by λ-presentable objects. So the category has enough

P-projectives. In case λ := ℵ0, by the result of [Her03], it has also enough P-injectives. In

[Gil14], the pure derived category Dpure(C) of a locally finitely presentable category C comes

from an injective and projective model structure on C(C) with the canonical proper class defined

degreewise. Since the most natural purity on Qcoh(X) is that of stalkwise defined, see Section

5.4, the aim of this chapter is to show that the stalkwise pure derived category of Qcoh(X) is

also the homotopy category of an injective model structure on C(C). In order to proceed by

using the argument of [CH02], we take advantage of two concepts: monoidal categories and

exact structures of Grothendieck type. By using the result on λ-purity, we prove in Lemma

7.2.2 that Qcoh(X) with the geometrical (⊗) pure exact sequences is of Grothendieck type.

That enables to use Lemma 7.1.15, [Sto13, Lemma 7.10], to define D⊗-pur(Qcoh(X)). And

finally, in case X is quasi-separated, ⊗-purity and stalkwise purity coincide, so we are done.
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One may wonder why we don’t prove it directly for the stalkwise purity. In Section (V.4),

we have proved the existence of stalkwise pure-injective envelopes. But we still don’t know

whether this exact structure is efficient in the sense of Definition 7.1.10 because of condition

(Ef4). The explicit question is whether Qcoh(X) with the stalkwise pure exact structure has a

generator.

In the third section, we tie up the two pure-derived categories of a closed symmetric monoidal

Grothendieck category C. The λ-pure derived category, Dλ-pur(C), comes from a projective

model structure while ⊗-pure derived category comes from an injective model structure. So it

seems that they are jointed to each other. We prove in Proposition 7.3.5 that there is a Quillen

adjunction between them.

In the last section, we restrict ourselves to a locally finitely presentable category. We recall

the result of [Craw94], exhibiting the equivalence between a locally finitely presentable category

with a categorical pure-exact structure and a category of Set-valued and direct limit preserving

functors from a small category, which are called flat functors. In fact, they correspond to flat

modules over a ring with enough idempotents. All together, we conclude in Theorem 7.4.3 that

to consider the categorical pure derived category of such a category is the same as the derived

category of flat modules over a ring with enough idempotents. Note that Murfet and Salarian

in [MS11] define the stalkwise pure-derived category of flat sheaves over a semi-separated

Noetherian scheme as the analogous to the homotopy category of projectives. As a matter

of fact, it is precisely the derived category of flat sheaves. Theorem 7.4.4 shows that, for any

scheme X , we can realize the derived category of flat sheaves as the homotopy category of a

model structure on C(F lat(X)) which is injective with respect to the exact structure.

7.1 Exact Categories

Let C be an additive category.
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Definition 7.1.1. An exact category is an additive category C equipped with a family E of

kernel-cokernel sequences

C ′ �
� i // C

p // // C ′′ ,

called short exact sequences of C (or conflations), with i and p admissible monic (or inflation)

and epic (or deflation), respectively, subject to:

E0) E is closed under isomorphisms.

E1) The identity morphism idC , C ∈ C, is both an admissible monic and epic.

E2) Admissible monics are closed under compositions.

E3) Admissible epics are closed under compositions.

E4) The pushout of an admissible monic along any morphism exists and yields an admissible

monic.

E5) The pullback of an admissible epic along any morphism exists and yields an admissible

epic.

The following consequences are immediate from the definition.

Proposition 7.1.2. [Büh10, Lemma 2.7,Prop 2.9] Let (C, E) be an additive exact category. Then

(i) A morphism is an isomorphism if and only if it is both an admissible monic and an

admissible epic.

(ii) Every split exact sequence belongs to any exact structure.

(iii) The direct sum of two short exact sequences is short exact.

One of the differences between proper classes of exact sequences and exact structures is that

in case j ◦ i is an admissible monic, the morphism i is not always implied to be an admissible



186

monomorphism, and dually for admissible epimorphisms. The following proposition, which

was one of the axioms of Quillen’s original definition, see [Qui74, pg 99], is a consequence of

the exact category axioms proved by [Yon60, Corollary p. 525]. Then we may conclude that an

exact structure on category is a proper class of exact sequences if C is abelian.

Proposition 7.1.3. (Obscure Axiom)[Büh10, Proposition 2.16] Let i : A → B be a morphism

in C with a cokernel. If there exists a morphism j : B → C in C such that the composite j ◦ i is

an admissible monic, then i is an admissible monic. Dually, for admissible epics.

The advantage of an exact structure is to enable us to consider relative Yoneda-Ext classes,

and therefore to do Relative Homological Algebra. They are like an abelian structure inside

a category. Any additive category admits an abelian structure even though it is not abelian,

by taking just the split short exact sequences. Most of diagramatic facts in an abelian

category continue to be available in an exact category, as well, such as Five Lemma, Noether

Isomorphism, 3× 3 Lemma... see [Büh10, Section 3.] for a detailed treatment.

If one has an abelian category C with a full subcategory C ′ closed under extensions, then C ′

has a canonical exact category structure that contains all short exact sequences with components

from C ′. The converse is also true, that is, every exact category is a full subcategory of an abelian

category.

The relative E-Yoneda extension ExtE(X, Y ) consists of all equivalence class of short exact

sequences

Y �
� i // C

p // // X

which belong to E . So all terminologies and concepts related in an abelian category can be

transformed into the relevant ones in an exact category by replacing admissible monic or epic

instead of usual monomorphisms and epimorphisms, such as cotorsion pairs, projectives and

injectives, injective and projective resolutions.



187

In order to get the exact category version of Hovey pairs, that is, model category structures

compatible with the exact structure, the class of admissible monics and admissible epics must

be closed under retractions, because in this case cofibrations are admissible monics with certain

cokernels and fibrations are admissible epics with certain kernels. Gillespie in [Gil11] proved

that this requirement on exact categories is equivalent to being the underlying category weakly

idempotent complete.

Lemma 7.1.4. [Büh10, Lemma 7.1-Corollary 7.5] For an exact category C, the following are

equivalent:

(i) Every section has a cokernel.

(ii) Every retraction has a kernel.

(iii) Every section is an admissible monic.

(iv) Every retraction is an admissible epic.

Definition 7.1.5. An exact category category is called weakly idempotent complete if it satisfies

one of the equivalent conditions in Lemma 7.1.4.

To be weakly idempotent complete doesn’t come freely for any exact category. For example,

by Eilenberg Swindle, for any projective module P there is a set I such that P ⊕ R(I) ∼= R(I).

So the projection of R(I) into R(I) is a retraction but it doesn’t admit kernel in the category of

free modules unless P is free.

Weakly idempotent complete exact categories are the natural set up where the hypothesis in

Obscure Axiom is always satisfied, see [Büh10, Proposition 7.6].

The following proposition is due to [Gil11, Proposition 2.4]

Proposition 7.1.6. Let (C, E) be an exact category. Then the following are equivalent:
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(i) (C, E) is weakly idempotent complete.

(ii) The class of admissible monics is closed under retractions.

(iii) The class of admissible epics is closed under retractions.

Since the main object of this chapter is to construct a pure derived category on a closed

symmetric monoidal Grothendieck category, we need to speak of complexes over an exact

category. As we already know from Chapter (II), for any additive category C, the category of

complexes C(C) and the homotopy category K(C) are always definable and they are additive.

Furthermore, there is a canonical exact category structure on C(C) which is carried from an

exact category C, defined as degreewise. Unless explicitly stated otherwise, C(C) will always

carry this exact structure.

In an abelian category, there are two ways of describing derived categories: as a localization

with respect to quasi-isomorphisms or as a Verdier quotient K(C)/Cac(C) where Cac(C)

denotes the class of all exact complexes. The later one forms the definition of derived category

for more general exact categories, D(C) := K(C)/Cac(C). So firstly, let us recall what an

acyclic complex is in an exact category.

Definition 7.1.7. A chain complex A over an exact category C is said to be acyclic, or exact, if

each differential dn factors as An � Zn−1(A)� An−1 such that Zn(A)� An � Zn−1(A) is

a short exact sequence.

Let Kac(C) be the full subcategory K(C) consisting of acyclic complexes. Through a result

from [Nee90, 1.1], Kac(C) is closed under mapping cones, therefore, it is a full triangulated

subcategory of K(C).

As for quasi-isomorphisms, in the abelian case, to be a morphism f quasi-isomorphism is

equivalent to the fact that its mapping cone, c(f), is acyclic. Regarding to this, a chain morphism

f : A→ B over an exact category C is called a quasi-isomorphism if its cone c(f) is homotopy
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equivalent to an acyclic complex. We should highlight here that c(f) need not be in Kac(C),

since Kac(C) is closed under isomorphisms as long as the category C is idempotent complete,

see [Büh10, Proposition 10.9].

Now what we need is to ensure that an exact category has enough injective objects, as it

happens in a Grothendieck category. Recall that the proof of the existence of injective envelope

in a Grothendieck category is based on transfinite colimits of pushouts. The mission of having

a generator is to enable to control the subobjects of any object, therefore, every object will

be ‘small’ for a sufficiently large enough cardinal. And also it permits to find a kind of Baer

criterion for categories. By this motivation, [SS11] come up with enough conditions on exact

categories through which these ideas can be proceeded.

Definition 7.1.8. [Sto13, Definition 3.2] Let α be an ordinal number, and let (Xβ, fββ′)β<β′<α

be a direct system indexed by α in C. Such a system is called a α-sequence if for each limit

ordinal β < α, the object Xβ together with the morphisms fµβ , µ < β, is a colimit of the direct

subsystem (Xµ, fµ,µ′)µ<µ′<β .

Definition 7.1.9. [Sto13, Definition 3.3] If C is an exact category, κ is a cardinal number and D

is a class of morphisms of C, then an object X ∈ C is called κ-small relative to D if for every

infinite regular cardinal α ≥ κ and every α-sequence (Eβ, fββ′)β<β′<α in C such that fβ,β+1 ∈ D

for all β + 1 < α, the canonical map of sets

lim−→
β<α

HomC(X,Eβ)→ Hom(X, lim−→
β<α

Eβ)

is an isomorphism. The object X is small relative to D if it is κ-small relative to D for some

cardinal κ.

Definition 7.1.10. [Sto13, Definition 3.4] An exact category C is called efficient if

Ef1) C is weakly idempotent complete.

Ef2) Arbitrary transfinite compositions of inflations exist and are themselves inflations.
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Ef3) Every object of C is small relative to the class of all inflations.

Ef4) C admits a generator. That is, there is an object G ∈ C such that every X ∈ C admits a

deflation G(I) → X → 0.

Definition 7.1.11. [Sto13, Definition 3.11] An exact category C is said to be of Grothendieck

type if it is efficient and it is deconstructible in itself, i.e, there is a set of objects S ⊂ C such

that C = Filt(S).

Proposition 7.1.12. [Sto13, Theorem 3.16] Let C be a Grothendieck category and C ′ ⊆ C be a

deconstructible class which is closed under retracts. Then C ′ together with the collection of all

short exact sequences in C whose terms belong to C is an exact category of Grothendieck type.

Proposition 7.1.13. [Sto13, Corollary 5.9] Let (C, E) be an exact category of Grothendieck type

and Inj the class of injective objects with respect to E . Then (C, Inj) is a functorially complete

cotorsion pair in C.

Lemma 7.1.14. [Sto13, Lemma 7.9] Let C ′ be a full subcategory of a Grothendieck category

which is deconstructible and closed under retracts, considered with the induced exact structure.

Then Cac(C ′) is deconstructible in C(C ′).

The next lemma is the exact category version of Proposition 3.3.13.

Lemma 7.1.15. [Sto13, Lemma 7.10] Let C be an exact category of Grothendieck type such that

Cac(C) is deconstructible in C(C). If (F ,B) is a complete hereditary cotorsion pair in C, then

(F̃ , F̃⊥) is a complete (and hereditary) cotorsion pair in C(C).

Theorem 7.1.16. [Sto13, Theorem 7.11] Let C be an exact category of Grothendieck type such

that Cac(C) is deconstructible in C(C). Then there is a hereditary model structure on C(C)

such that

(i) every object of C(C) is cofibrant.
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(ii) The trivial objects are precisely the acyclic complexes.

(iii) The class of fibrat objects is Cac(C)⊥.

In particular we have HoC(C) = D(C), the unbounded derived category of C.

7.2 The pure-injective model structure

Let C be a closed symmetric monoidal Grothendieck category. In Section 5.2 we noted that C

is locally λ-presentable for some regular cardinal λ, and that there are two generally different

notions of purity. Let P denote the proper class of λ-pure short exact sequences in C and P⊗

denote the proper class of geometrical pure short exact sequences in C. Recall that we have the

containment P ⊆ P⊗. Our main interest in this section will be the ⊗-pure exact structure. So

throughout the rest of this section, when we say pure exact we will always mean geometrical

pure exact, unless explicitly stated otherwise. We will denote by C(C)⊗ the exact structure

consisting of C(C) along with the componentwise pure exact sequences.

Proposition 7.2.1. Let {Pi; ψij : Pi → Pj}I be a λ-directed system in C. Then the canonical

morphism
⊕

I Pi → colimPi → 0 is λ-pure epic. So it is also geometrical pure epic.

Proof. For any ρ : i → j, s(ρ) = i and t(ρ) = j. For each i ∈ I , let us denote by ιi :

Pi →
⊕

I Pi and πi :
⊕

Pi → Pi the canonical injection and projection maps respectively.

Consider lρ := ιt(ρ) ◦ ψij − ιs(ρ) : Ps(ρ) →
⊕

I Pi, which is monic for all morphism ρ in I ,

(actually it splits). So, we have the induced morphism (lρ)ρ :
⊕

ρ Ps(ρ) →
⊕

I Pi. We know

that colimPi = Coker(lρ)ρ. That is, there is an exact sequence

0 //
∑

ρ Im lρ //
⊕

I Pi
g // colimPi // 0 .

Then αi := g ◦ ιi is the family of morphisms αi : Pi → colimPi with αj ◦ ψij = αi for
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each ρ : i → j. Let f : H → colimPi be a morphism where H is λ-presentable. Then f

factors through αi for some i, that is, there is a morphism f ′ : H → Pi such that αi ◦ f ′ = f .

But αi = g ◦ ιi, g ◦ ιi ◦ f ′ = f . That is, that exact sequence is Hom(H,−)-exact for each

λ-presentable object H , which means that it is λ-pure exact.

Lemma 7.2.2. C with the pure exact structure is an exact category of Grothendieck type.

Proof. It is routine to check that C along with the pure exact sequences form an exact category.

So we check Definitions 7.1.10 and 7.1.11. First, we must prove that it is efficient. (Ef1) is clear

since C is abelian and (Ef2) is also clear since the tensor product preserves any colimit. Any

object X ∈ C is κ-presentable for some cardinal κ, so (Ef3) easily follows. Now (Ef4) follows

from Proposition 7.2.1. In detail since C is locally λ-presentable we have a set of λ-presentable

objects for which each X ∈ C is the colimit of a λ-directed system {Pi; ψij : Pi → Pj}I with

each Pi in that set. Then by Proposition 7.2.1 the canonical morphism
⊕

I Pi → colimPi → 0 is

a pure epimorphism as required. So we conclude that C with the pure exact structure is efficient.

Finally by Theorem 5.1.6 and the fact that if A ≤ A′ ≤ B is such that A ≤ B and A′/A ≤ B/A

are pure-monic in C then A′ ≤ B is also pure-monic, we infer that there is a regular cardinal γ

such that C = Filt(C≤γ). Here C≤γ is the class of all γ-presentable objects in C and the filtration

is built in C with the pure-exact structure.

A complex C in C(C) is called ⊗-acyclic if it is acyclic in C(C)⊗, the exact category

of chain complexes with the pointwise pure exact structure. This means each sequence

0 → ZnC → Cn → Zn−1C → 0 is pure, or equivalently, C ⊗ S is exact for all S ∈ C.

We shall denote by C⊗-ac(C) the class of all ⊗-acyclic complexes. Our aim is to construct the

relative derived category of C with respect to the ⊗-pure proper class, that is, whose trivial

objects are the ⊗-acyclic complexes. To achieve this aim, we will use the proper class version

of Hovey’s correspondence between cotorsion pairs and model category structures mentioned in

Proposition 3.3.5 and Proposition 3.3.6. We note that when the underlying category is abelian,

an exact structure on the category is the same thing as a proper class [Gil14, Appendix B]. So the
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language of abelian model structures from [Hov02] and the language of exact model structures

from [Gil11] and [Sto13] are the same thing when the underlying category is abelian.

Let Pinj denote the class of objects in C having the injective property with respect to the

proper class P⊗, the geometrical pure short exact sequences in C. We will call an object in Pinj

pure-injective. From Theorem 5.2.6, we already know that (C,Pinj) is a complete cotorsion

pair in C with the pure exact structure. But by Proposition 7.1.13 and Lemma 7.2.2, we reprove

that (C,Pinj) is a hereditary complete cotorsion pair. In particular, every object in C can be

purely embedded in a pure-injective object.

We now define the following classes in C(C), which will turn out to be the fibrant and trivially

fibrant objects in our model structure for the ⊗-pure derived category:

dgPinj = {L ∈ C(C) : Ln ∈ Pinj and each map E → L is homotopic to 0,∀E ∈ C⊗-ac(C)}

and

P̃inj = {T ∈ C⊗-ac(C) : ZnT ∈ Pinj}.

One can check that P̃inj is the class of injective objects in the exact category C(C)⊗ of chain

complexes with the pointwise pure-exact structure. Moreover, they are precisely the contractible

complexes with pure-injective components. We want to apply relative version of Proposition

3.3.6 to the pairs (C⊗-ac(C), dgPinj) and (C(C), P̃inj). So we have to show that these two

pairs are complete cotorsion pairs in C(C)⊗.

First, we will prove that C⊗-ac(C) is deconstructible. We will start with the following lemma.

Lemma 7.2.3. Let X be ⊗-acyclic and X ′ be a subcomplex of X . Assume that

(i) X ′ is acyclic.

(ii) ZnX ′ ⊆ ZnX is ⊗-pure, for each n ∈ Z.
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Then X ′ is ⊗-acyclic and X ′n ⊆ Xn is ⊗-pure, for each n ∈ Z.

Proof. By hypothesis, we have the commutative diagram below with the top row exact, the

bottom row pure exact, and the outer vertical arrows pure monomorphisms.

0 −−−→ ZnX
′ −−−→ X ′n −−−→ Zn−1X

′ −−−→ 0y y y
0 −−−→ ZnX −−−→ Xn −−−→ Zn−1X −−−→ 0

Since the composite ZnX ′ ⊆ ZnX ⊆ Xn is pure, we get that the composite ZnX ′ ⊆ X ′n ⊆ Xn

is also pure. It follows immediately that ZnX ′ ⊆ X ′n is pure. So the top row is pure exact

and now the snake lemma can be used to show that the middle vertical arrow is also a pure

monomorphism.

Proposition 7.2.4. There is a regular cardinal γ such that every ⊗-acyclic complex X has a

C⊗-ac(C)≤γ-filtration. That is, C⊗-ac(C) = Filt(C⊗-ac(C)≤γ), where C⊗-ac(C)≤γ is the class of

γ-presentable ⊗-acyclic complexes, and the monomorphisms in the filtration are with respect

to the degreewise pure exact structure.

Proof. The class C⊗-ac(C) is closed under direct limits, so it suffices to show that there is

a regular cardinal γ satisfying that: given A ⊆ X 6= 0 where X ∈ C⊗-ac(C) and A is

γ-presentable, there exists a γ-presentable X ′ 6= 0 such that A ⊆ X ′ ⊆ X , and X ′ ∈ C⊗-ac(C),

and X ′n ⊆ Xn is ⊗-pure for each n ∈ Z. Once we show this, a standard argument utilizing

properties of the ⊗-purity will allow for the construction of the desired filtration of X .

Since C is Grothendieck, it is locally λ-presentable and so C(C) is also locally λ-presentable.

Let 0 6= X ∈ C⊗-ac(C). By Theorem 5.1.6, there is a regular cardinal γ such that every

γ-presentable subcomplex A ⊆ X can be embedded in a γ-presentable subcomplex X ′ ⊆ X

which is a λ-pure embedding. According to Lemma 7.2.3 we just need to check that X ′ is

acyclic and that ZnX ′ ⊆ ZnX is ⊗-pure for all n ∈ Z. Now for any λ-presentable L ∈ C
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we have that Sn(L) is a λ-presentable complex. Therefore, applying HomC(C)(S
n(L),−) to

0 −→ X ′ −→ X −→ X/X ′ −→ 0, yields a short exact sequence

0 −→ HomC(C)(S
n(L), X ′) −→ HomC(C)(S

n(L), X) −→ HomC(C)(S
n(L), X/X ′) −→ 0.

But the canonical isomorphism HomC(L,ZnY ) ∼= HomC(C)(S
n(L), Y ) gives us a short exact

sequence 0 −→ HomC(L,ZnX ′) −→ HomC(L,ZnX) −→ HomC(L,Zn(X/X ′)) −→ 0. Since C is

locally λ-presentable, there it has a generating set consisting of λ-presentable objects and so it

follows that 0 −→ ZnX
′ −→ ZnX −→ Zn(X/X ′) −→ 0 is a short exact sequence. In fact we have

just shown that this is a λ-pure exact sequence in C. So it is also ⊗-pure exact. It now only

remains to show that X ′ is itself exact. For this, we apply the snake lemma to

0 −−−→ ZnX
′ −−−→ ZnX −−−→ Zn(X/X ′) −−−→ 0y y y

0 −−−→ X ′n −−−→ Xn −−−→ (X/X ′)n −−−→ 0

to conclude we have a short exact sequence 0 −→ Bn−1X
′ −→ Bn−1X −→ Bn−1(X/X

′) −→ 0 for

all n. We then turn around and apply the snake lemma to

0 −−−→ BnX
′ −−−→ BnX −−−→ Bn(X/X ′) −−−→ 0y y y

0 −−−→ ZnX
′ −−−→ ZnX −−−→ Zn(X/X ′) −−−→ 0

and use that BnX = ZnX to conclude that BnX = ZnX (and Bn(X/X ′) = Zn(X/X ′)).

Corollary 7.2.5. The pair (C⊗-ac(C), dgPinj) is a complete (and hereditary) cotorsion pair in

C(C)⊗.

Proof. As noted after Proposition 7.1.13, we have that (C,Pinj) is a complete hereditary

cotorsion pair in C with the pure exact structure. So by Lemma 7.1.15 and Proposition 7.2.4,

we infer that (C⊗-ac(C),C⊗-ac(C)⊥) is a complete (and hereditary) cotorsion pair in C(C)⊗.

So it only remains to show that C⊗-ac(C)⊥ coincides with the class dgPinj. By definition of
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dgPinj, it is clear dgPinj ⊆ C⊗-ac(C)⊥. Now let X ∈ C⊗-ac(C)⊥. It is enough to show that

each Xi is pure-injective. Let 0 → Xi → A → B → 0 be pure-exact sequence in C. Then we

get a short exact sequence of complexes 0 → X → A → Di(B) → 0 in C(C) by taking the

pushout ofXi → Xi−1 andXi → A and whereAi = A. Since pure-monomorphisms are closed

by forming pushouts the sequence is degreewise pure-exact. By assumption the sequence splits

and so, in particular, it splits on each degree. Hence Xi is pure-injective.

Proposition 7.2.6. The pair (C(C), P̃inj) is a complete (and hereditary) cotorsion pair in

C(C)⊗. Moreover, P̃inj = dgPinj ∩C⊗-ac(C).

Proof. It can be easily observed that C(C)⊗, the exact category of chain complexes with the

degreewise pure-exact structure, is of Grothendieck type. Indeed, C(C) is a Grothendieck

category and any λ-pure subobject gives us a degreewise λ-pure monomorphism. So it is

a degreewise ⊗-pure monomorphism as well. Note that, colimits in C(C) are computed

pointwise. So we again can apply Proposition 5.1.6 to argue that C(C)⊗ is deconstructible

in itself. Then by Proposition 7.1.13 we get that (C(C), Inj) is a complete cotorsion pair in

C(C)⊗. But here Inj = P̃inj.

Since P̃inj consists of contractible complexes of pure-injectives, P̃inj ⊆ dgPinj ∩C⊗-ac(C).

For the converse, let X ∈ dgPinj ∩ C⊗-ac(C). By assumption, the identity map X → X is

homotopic to zero, so X is a contractible complex of pure-injectives. So X ∈ P̃inj.

Theorem 7.2.7. Let C be a closed symmetric monoidal Grothendieck category and C(C) the

associated category of chain complexes. Then there is a cofibrantly generated model category

structure on C(C) whose trivial objects are the⊗-pure acyclic complexes; that is, complexes X

for which X ⊗ S is exact for all S ∈ C. The model structure is exact with respect to the exact

category C(C)⊗ of chain complexes along with the proper class of degreewise ⊗-pure exact

sequences. In fact, the model structure is injective in the sense that every complex is cofibrant

and the trivially fibrant complexes are the injective objects of C(C)⊗, which are precisely the

contractible complexes with ⊗-pure injective components. We call this model structure the
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⊗-pure injective model structure on C(C) and its corresponding homotopy category is the

⊗-pure derived category, denoted D⊗-pur(C).

Firstly, we recall what kind of relation there are between the two notion of purity in Qcoh(X),

that of monoidal structure and that of stalkwise defined as in Section 5.4. The definition of

⊗-pure used here is slightly different than the one used in Section 5.4. But they agree when X

is quasi-separated. See [EEO14, Remark 3.5].

Proposition 7.2.8. Let X be a quasi-separated scheme, and f : F → G a monomorphism in

Qcoh(X). The following assertions are equivalent:

(i) f is ⊗-pure.

(ii) There exists an open affine covering U = {Ui}i∈I of X such that fUi is pure in

OX(Ui)-Mod.

(iii) f is stalkwise pure.

Proof. (ii⇒ iii) and (iii⇒ i) have been already proved in Proposition 5.3.3. So we just prove

(i ⇒ ii). Let U be an affine open subset of U and ι : U ↪→ X be the open immersion. And

let M ∈ OX(U)-Mod. Since X is quasi-separated, then ι∗(M̃) is a quasi-coherentOX-module.

Therefore

0→ ι∗(M̃)⊗ F → ι∗(M̃)⊗ G

is exact. But then

0→ (ι∗(M̃)⊗ F)(U)→ (ι∗(M̃)⊗ G)(U)

is exact in OX(U)-Mod, that is

0→ ι∗(M̃)(U)⊗ F(U)→ ι∗(M̃)(U)⊗ G(U)



198

is exact. Since, for each OX(U)-module A, ι∗(Ã)(U) = A, we get that 0 → M ⊗ F(U) →

M ⊗ G(U) is exact. Thus 0→ F(U)→ G(U) is pure.

Corollary 7.2.9. Let X be a quasi-separated scheme. Let E be the exact structure coming from

the stalkwise-purity in Qcoh(X), and let us consider the category of unbounded complexes

C(Qcoh(X)). Then with respect to the induced degreewise exact structure from E , there is an

exact and injective model category structure on C(Qcoh(X)). The corresponding homotopy

category is the stalkwise-pure derived category (or geometric pure derived category), which we

denote Dstk-pure(Qcoh(X)).

7.3 Relationship between the two pure derived categories

Suppose that C is a closed symmetric monoidal Grothendieck category. In this section we

get an adjunction between the two derived categories obtained from the proper class P of

the λ-pure short exact sequences and the proper class P⊗ of the geometrical pure short exact

sequences. By [Gil14], we have the λ-pure derived category Dλ-pur(C) and the λ-pure projective

model structure on C(C)P whose trivial objects are the λ-pure exact complexes. This model

structure corresponds to Hovey pairs in C(C)P that we denote by (dg λ -Pproj,Cλ-ac(C)) and

(P̃roj,C(C)). In particular, Cλ-ac(C) denotes the class of λ-pure exact complexes.

From the previous section, we have the Hovey pairs (C⊗-ac(C), dgPinj) and (C(C), P̃inj)

on C(C)⊗. So the derived category D⊗-pur(C) has an injective model structure whose trivial

objects are the ⊗-acyclic complexes, while Dλ-pur(C) has a projective model structure whose

trivial objects are the λ-pure acyclic complexes.

Definition 7.3.1. Suppose C and D are model categories.

(i) We call a functor F : C → D a left Quillen functor if F is a left adjoint and preserves

cofibrations and trivial cofibrations.
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(ii) We call a functor U : D → C a right Quillen functor if U is a right adjoint and preserves

fibrations and trivial fibrations.

(iii) Suppose (F,U, ϕ) is an adjunction from C to D. That is, F is a functor C → D, U

is a functor D → C, and ϕ is a natural isomorphism Hom(FA,B) → Hom(A,UB)

expressing U as a right adjoint of F . We call (F,U, ϕ) a Quillen adjunction if F is a left

Quillen functor.

Lemma 7.3.2. [Hov99, Lemma 1.3.4] Suppose (F,U, ϕ) : C → D is an adjunction, and C

and D are model categories. Then (F,U, ϕ) is a Quillen adjunction if and only if U is a right

Quillen functor.

Definition 7.3.3. Suppose C and D are model categories.

(i) If F : C → D is a left Quillen functor, define the total left derived functor LF : HoC →

HoD to be the composite

HoC HoQ // HoCc HoF // HoD .

Given a natural transformation τ : F → F ′ of left Quillen functors, define the total

derived natural transformation Lτ to be Hoτ ◦ HoQ, so that (Lτ)X = τQX .

(ii) If U : D → C is a right Quillen functor, define the total right derived functor RU :

HoD → HoC of U to be the composite

HoD HoR // HoDf HoU // HoC .

Given a natural transformation τ : U → U ′ of right Quillen functors, define the total

derived natural transformation Rτ to be Hoτ ◦ HoR, so that RτX = τRXX .

Lemma 7.3.4. [Hov99, Lemma 1.3.10] Suppose C and D are model categories and (F,U, ϕ) :

C → D is a Quillen adjunction. Then LF and RU are part of an adjunction L(F,U, ϕ) =

(LF,RU,Rϕ), which we call the derived adjunction.
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Proposition 7.3.5. id : C(C)P → C(C)⊗ is a left Quillen functor. So there is a Quillen

adjunction between Dλ-pur(C) and D⊗-pur(C)

Proof. Clearly id is a left adjoint functor of id : C(C)⊗ → C(C)P . Also, id preserves

cofibrations and trivial cofibrations. Indeed, a cofibration f in C(C)P is a degreewise λ-pure

monomorphism with cokernel in dg λ -Pproj. Such an f is a cofibration in C(C)⊗ as well

since here the cofibrations are the degreewise ⊗-pure monomorphisms. Also, any trivial

cofibration f in C(C)P is a degreewise λ-pure monomorphism with cokernel in P̃roj, in

particular, contractible. So it is a trivial cofibration in C(C)⊗.

By Lemma 7.3.2, id : C(C)⊗ → C(C)P is a right Quillen functor.

From Lemma 7.3.4, the total left derived functor L(id) : Dλ-pur(C) → D⊗-pur(C) and

the total right derived functor R(id) : D⊗-pur(C) → Dλ-pur(C) gives us an adjunction

(L(id), R(id)). By definition, L(id)(X) is its cofibrant replacement in C(C)P , that is,

L(id)(X) ∈ dg λ -Pproj. Dually, R(id)(X) is its fibrant replacement in C(C)⊗, soR(id)(X) ∈

dgPinj.

7.4 The pure derived category of flat sheaves via model structures

Let A be a locally finitely presentable additive category. We start by recalling the following

representation theorem due to Crawley-Boevey (see also [Pre09, Chapter 16] for a nice

exposition).

Theorem 7.4.1 (Crawley-Boevey). Every finitely accessible additive category A is equivalent

to the full subcategory F lat(A) of the category Mod-A of unitary right A-modules consisting of

flat right A-modules where A is the functor ring of A (that is, a ring with enough idempotents).

This equivalence gives a 1-1 correspondence between pure exact sequences in A and exact
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sequences in F lat(A).

In other words, A with its pure exact structure is equivalent to F lat(A) with its canonical

exact structure inherited from Mod-A. In particular, the equivalence takes injective objects inA

(pure-injectives) to injective objects in F lat(A) (cotorsion flat modules). Similarly it preserves

projectives, taking pure-projectives in A (retracts of direct sums of finitely presentable objects)

to projective modules in F lat(A). Also each exact category is of Grothendieck type with the

class of acyclic complexes being deconstructible. This leads to injective model structures on

the associated chain complex categories with their inherited degreewise exact structures. On the

other hand, each of the exact categories A and F lat(A) possesses a set of projective generators

leading to projective model structures. Concentrating on the exact category C(F lat(A)), we

have the following fact from [Gil13, Corollary 7.4 and 7.5].

Lemma 7.4.2. There is an injective model structure on C(F lat(A)) in which every object is

cofibrant and the fibrant objects are dg-cotorsion complexes which are flat on each degree. The

trivial objects are the acyclic complexes in C(F lat(A)). This class coincides with F̃ , the class

of exact complexes with flat cycles. On the other hand, there is a projective model structure

on C(F lat(A)) having the same class of trivial objects. Here every object is fibrant and the

cofibrant objects are the complexes consisting of a projective module in each degree.

On the other hand we learned from [Gil14] that the (usual, i.e. categorical) pure derived

category of a locally finitely presentable category A can be obtained as the homotopy category

of both an injective and projective model category structure on the exact category C(A)dw−pur.

This denotes the exact category of chain complexes with the degreewise pure exact structure.

So in view of the previous comments we have the following alternative way of defining the pure

derived category of A.

Theorem 7.4.3. Let A be a locally finitely presentable additive category and F lat(A) its

equivalent full subcategory of flat modules in Mod-A. The (categorical) pure derived
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category of A, Dpur(A), is equivalent to the derived category of the exact category F lat(A),

D(F lat(A)).

Proof. Using the equivalence of Crawley-Boevey discussed above, the acyclic complexes in the

exact category C(A)dw−pur, which are the pure acyclic complexes, correspond to the class F̃ of

acyclic complexes in C(F lat(A)). The injective model structure on C(A)dw−pur is completely

determined by the injective cotorsion pair (Pure acyclic complexes, DG-pure-injectives). This

corresponds to the injective cotorsion pair (F̃ , dg-cotorsion complexes of flats) in Lemma 7.4.2.

There is a similar correspondence for the projective model structures. We note that by [Craw94,

Lemma 1] the exact structures are each weakly idempotent complete and so by [Gil13,

Lemma 3.1] a map is a weak equivalence in either model structure if and only if it factors

as an admissible monomorphism (inflation) with trivial cokernel followed by an admissible

epimorphism (deflation) with trivial kernel. From this we see that weak equivalences in

C(A)dw−pur correspond to weak equivalences in C(F lat(A)). So the homotopy categories

Dpur(A) and D(F lat(A)) must be equivalent.

Note that the two injective cotorsion pairs in the above proof may each be thought of as the

“DG-injective” cotorsion pairs, but with respect to their exact structure. Similarly the projective

cotorsion pairs may be thought of as the “DG-projective” cotorsion pairs with respect to these

exact structures.

So it seems clear that in order to gain a better understanding of the pure derived category,

one should focus on the derived category of flat modules. In [MS11] Murfet and Salarian

define the pure derived category of flat sheaves for a semi-separated noetherian scheme. But a

close inspection of their definition reveals that they are considering the derived category of flat

sheaves in the above sense. Theorem 7.4.4 shows that, for any scheme X , we can realize the

derived category of flat sheaves as the homotopy category of a model structure on C(F lat(X))

which is injective with respect to the exact structure.
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Theorem 7.4.4. Let X be a scheme, and F lat(X) the category of quasi-coherent flat sheaves.

There is an injective exact model structure on C(F lat(X)). So every object is cofibrant and the

fibrant objects are dg-cotorsion complexes which are flat on each degree. The trivial objects are

those in Cac(F lat(X)) = F̃ , the class of acyclic complexes with flat cycles. The corresponding

homotopy category is the derived category of flat sheaves, D(F lat(X)).

Proof. The category of quasi-coherent sheaves is Grothendieck and the class F lat(X) of flat

quasi-coherent sheaves is deconstructible. So by Proposition 7.1.12 we get that F lat(X)

inherits the structure of an exact category of Grothendieck type. Moreover, by Lemma 7.1.14

we get that Cac(F lat(X)) = F̃ is deconstructible in the exact category C(F lat(X)). Then we

conclude, using Theorem 7.1.16, that (F̃ , F̃⊥) is an injective model structure in C(F lat(X)).

It is left to argue that F̃⊥ = Y ∩Cac(F lat(X)) where Y is the class of dg-cotorsion complexes

in C(Qcoh(X)). We are calling a complex Y ∈ C(Qcoh(X)) dg-cotorsion if each Yn is

cotorsion and every chain map F −→ Y is null homotopic whenever F is in F̃ . So then

Y ∩ Cac(F lat(X)) is the class of complexes Y with each Yn cotorsion flat and with every

chain map F −→ Y being null homotopic whenever F is in F̃ . But now using that the injective

objects in F lat(X) are the cotorsion flats, we can argue as in Corollary 7.2.5 that this coincides

with F̃⊥ in C(F lat(X)).





CHAPTER EIGHT

GORENSTEIN PROJECTIVE RESOLVENTS

Gorenstein projective and injective modules constitute the heart of Gorenstein Homological

Algebra, whose current definitions were introduced in [EJ95]. The subject of this chapter is

Gorenstein projective modules. The first section is the preliminary part of the chapter.

In the second section, we prove the existence of Gorenstein projective preenvelopes for

finitely generated modules over a local n-Gorenstein ring. So we deal with right Gorenstein

projective resolutions, see Theorem 8.2.8 and Theorem8.2.9.

In the third section, we deal with certain left derived functors of Hom(−,−) by using

(complete) projective and Gorenstein projective resolvents. We prove that each one has a

balance property, see Proposition 8.3.2. And all of them are tied up in a long exact complex,

see Theorem 8.3.3.

8.1 Gorenstein projective modules

In this section, we recall some basic definitions and facts that will be used later. Throughout the

paper, we assume that R is a commutative, associative ring with unity.

R-Mod, R-mod denote the category of R-modules and finitely generated R-modules,

respectively. ProjR, projR, FPR and AbsR denote full subcategories of R-Mod consisting

of projective, finitely generated projective, finitely presented and absolutely pure modules,

respectively.

Definition 8.1.1. Let R be Noetherian. It is called Gorenstein if idR <∞.

205
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In the literature, some authors call such a ring to be Iwanaga-Gorenstein since it is

different from the one which is used in Algebraic Geometry. In Algebraic Geometry, a ring

is called Gorenstein if for each prime ideal p, idRp Rp < ∞, see [Bas63]. But in case

Krulldim(R) < ∞, this is equivalent to being Iwanaga-Gorenstein ring. In this thesis, we

deal with Iwanaga-Gorenstein rings. So when we say ‘Gorenstein ring’, it is always referred

to the Iwanaga version of Gorenstein, see [Iwa80]. In case idR ≤ n for some n ∈ N, we

sometimes call the ring n-Gorenstein.

If we consider the class ProjR, we already know that ProjR is a precovering class in R-Mod.

So every R-module has a projective resolution.

If R is local and Noetherian, then it is semiperfect. So, for any finitely generated module M ,

its dual will have a projective cover Rn → M∗. This allows to map M to a projective module,

M → M∗∗ ↪→ (Rn)∗ ∼= Rn, which will be its projective envelope. This means that over such

a ring, the class projR is covering and enveloping for the subcategory R-mod. So every finitely

generated module has a minimal right and left proj-resolution.

Let

. . .→ P1(M)→ P0(M)→M → 0

be a projective resolution of M . Now, suppose that M has a right Proj-resolution (projective

resolvent)

0→M → P 0(M)→ P 1(M)→ . . . .

By patching these left and right Proj-resolutions of M , we get a complex

. . . // P1(M) // P0(M) //

##

P 0(M) // P 1(M) // . . .

M

;;
.
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Renumerating we get:

T : . . . // P1(M) // P0(M) // P−1(M) // P−2(M) // . . . .

This is a complete Proj-resolution of M . For any P ∈ Proj, Hom(T, P ) may not be exact

at some points i > 0. So we call an exact sequence T of projective modules to be totally

acyclic if it is Hom(−,Proj)-exact. The importance of totally acyclic complexes comes from the

connection between G- dim and Gorenstein projective modules. [AB69] defined the Gorenstein

dimension, G-dim, for finitely generated modules. [EJ95] extended it for non-finite modules

using totally acyclic complexes.

A complete projective resolution of M is a diagram TM
u // PM

v //M where

PM
v //M is a left projective resolution of M , TM is a totally acyclic complex and ui is

bijective for i� 0. It is known that this resolution for any moduleM is unique up to homotopy,

[Vel06]. Dually, a complete projective resolvent of M is a diagram M v // PM u // TM

where M v // PM is a right projective resolution of M , TM is a totally acyclic complex and

ui is bijective for i� 0.

Definition 8.1.2. An R-module M is called Gorenstein projective if there is a totally acyclic

complex T such that M = Ker(P0 → P−1).

If R is coherent and M is finitely generated, M is Gorenstein projective if and only if there

is an exact sequence T of finitely generated projective modules such that M = Ker(P0 → P−1)

and it remains exact under the contravariant functor Hom(−, R).

Proposition 8.1.3. [Chr00, Proposition 4.1.3] Let R be Noetherian and M be a finitely

generated R-module. M is Gorenstein projective if and only if G-dim(M) = 0

An R-module M is called reduced if it doesn’t have a nonzero projective direct summand.

Suppose that M has a projective envelope. Then a projective preenvelope f : M → P is a
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projective envelope if and only if P has no nonzero projective direct summand containing the

image of f .

8.2 Gorenstein Projective Resolvents

In this section, we prove that over a commutative local n-Gorenstein ring every finitely

generated module has a finite right Gorenstein projective resolution. In this section, we assume

that R is a commutative and n-Gorenstein ring for some n ≥ 0.

Proposition 8.2.1. [EJ11b, Proposition 10.2.12] Let M be an R-module and let

. . .→ Pi(M)→ . . .→ P1(M)→ P0(M)→M → 0

be a projective resolution of M . If Ci = Ker(Pi(M) → Pi−1(M)) then Ci ↪→ Pi(M) is a

projective preenvelope for all i ≥ n.

Corollary 8.2.2. Let M and N be R-modules with projective resolutions

. . .→ Pi(M)→ . . .→ P1(M)→ P0(M)→M → 0

. . .→ Pi(N)→ . . .→ P1(N)→ P0(N)→ N → 0.

Let Ci := Ker(Pi(M)→ Pi−1(M)) and C ′i := Ker(Pi(N)→ Pi−1(N)) for each i. If f : Ci →

C ′i is any homomorphism for some i ≥ n, then there are morphisms fj : Pj(M) → Pj(N) for

all j ≥ n which make commutative the diagrams obtained by the above resolutions.

Proof. By Proposition 8.2.1, Ci ↪→ Pi(M) is a projective preenvelope for all i ≥ n while

Pi+1(N) → C ′i is a projective precover for all i. Hence if we have a morphism f : Ci → C ′i

for some i ≥ n then it gives us morphisms fi : Pi(M) → Pi(N) and fi+1 : Pi+1(M) →

Pi+1(N) which commute with differential maps and f . Since these resolutions are exact, we
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have morphisms f i : Ci−1 → C ′i−1 and f i+1 : Ci+1 → C ′i+1. The same argument can be

repeated from the morphisms f i and f i+1 if i − 1 ≥ n. So we get morphisms fj : Pj(M) →

Pj(N) for all j ≥ n.

Corollary 8.2.3. Let R be local. Let M be a finitely generated R-module. If the minimal

projective resolution

. . .→ Pi(M)→ . . .→ P1(M)→ P0(M)→M → 0

is eventually periodic, then it becomes periodic after n steps.

Proof. Eventually periodic means that there are positive integersm and p such that Pt+1(M)→

Pt(M)→ Pt−1(M) ∼= Pt+1+p(M)→ Pt+p(M)→ Pt−1+p(M) for t > m. Suppose that m > n

(otherwise it is clear). Consider the minimal resolution of Cp−1

. . .→ Pm+p(M)→ . . .→ Pp+1(M)→ Pp(M)→ Cp−1 → 0.

Then by Corollary 8.2.2 with N = Cp−1 and by the isomorphism Cm+1 → Cm+1+p, we get

isomorphisms Pi+2(M) → Pi+1(M) → Pi(M) ' Pi+2+p(M) → Pi+1+p(M) → Pi+p(M) for

all i ≥ n.

Proposition 8.2.4. [EJ11b, Proposition 10.2.15] Let M be a finitely generated R-module with

a projective resolvent

0→M → P 0(M)→ P 1(M)→ P 2(M)→ . . . .

LetDi−1 := Ker(P i(M)→ P i+1(M)). Then P i → Di is a projective precover for all i ≥ n−2.

If it is minimal, then Di is reduced for all i ≥ n− 1.

Corollary 8.2.5. Let M and N be finitely generated R-modules having projective resolvents

0→M → P 0(M)→ P 1(M)→ P 2(M)→ . . .
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0→ N → P 0(N)→ P 1(N)→ P 2(N)→ .

Let Di−1 = Ker(P i(M) → P i+1(M)) and D′i−1 := Ker(P i(N) → P i+1(N)). If we have

f : Di → D′i for some i ≥ n−2, then it can be completed to morphisms f j : P j(M)→ P j(N)

for all j ≥ n− 2.

Proof. Using the previous proposition and the same process as in 8.2.2.

Proposition 8.2.6. [EJ11b, Theorem 10.2.14] Let M be an R-module and let

. . .→ Pi(M)→ . . .→ P1(M)→ P0(M)→M → 0

be a projective resolution. Then Ci := Ker(Pi(M)→ Pi−1(M)) is Gorenstein projective for all

i ≥ n− 1.

Proposition 8.2.7. [EJ11b, Theorem 10.2.16] Let M be a finitely generated R-module having

a projective resolvent

0→M → P 0(M)→ . . .→ P 1(M)→ P 2(M)→ . . . .

Let Di := Ker(P i+1(M)→ P i+2(M)), then Di is Gorenstein projective for all i ≥ n− 2.

The next result is proved in [Jør07] and [EJ11b, Corollary 11.8.3]) by different ways. Here,

we reprove it since the process used in the proof will be needed later to get a finite Gorenstein

projective resolvent in Theorem 8.2.9 for finitely generated modules.

Theorem 8.2.8. Let R be local. Every finitely generated module M has a finitely generated

Gorenstein projective preenvelope.

Proof. Let

P : 0→M → P 0 → P 1 → . . .
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be a projective resolvent of M . Consider its right partial resolution

P : 0→M → P 0 → P 1 → . . .→ P n−2 → D → 0

where D := Ker(P n−1 → P n). By Proposition 8.2.7, D is a Gorenstein projective module.

Take a partial projective resolution of D,

L : 0→ K → D0 → . . .→ Dn−2 → D → 0.

This can be completed to a morphism u : P→ L with u : M → K. It is a Gorenstein projective

preenvelope in the stable homotopy category St(R), that is, if G is any Gorenstein projective

with partial right projective resolution

PG : 0→ G→ P 0(G)→ . . .→ P n−2(G)→ T → 0

and if there is a morphism g : M → G, then this map can be completed to a morphism

P → PG with s : D → T . By using that morphism s, we can get a morphism L → PG with

t : K → G. These morphisms P → PG and P → L → PG are not the same but by some

standard calculations it can be seen that their difference g− t◦f is factorized throughM → P 0.

So the claim is to prove that α := (d, u) : M → P 0 ⊕ K is a Gorenstein projective

preenvelope, where d is the map M → P 0. P 0 ⊕ K is Gorenstein projective since K is

Gorenstein projective and P 0 is projective. Now, if g : M → G is a morphism with a Gorenstein

projective module G, by the above argument, there is a map t : K → G such that g − t ◦ u is

factorized over d, i.e., there exists h : P 0 → Gwith h◦d = (g−t◦u). Then (h, t) : P 0⊕K → G

is the desired map.

Theorem 8.2.9. Let R be local. If M is a finitely generated R-module then M has a finite right

Gorenstein projective resolution.
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Proof. Let

P : 0→M → P 0 → P 1 → . . .→ P n−2 → D → 0

L : 0→ K → D0 → . . .→ Dn−2 → D → 0

be complexes with the morphism u : P→ L as in the proof of Theorem 8.2.8. Then this gives

an exact sequence of complexes

0→ L→ c(u)→ P[1]→ 0

where c(u), the mapping cone of u, is given by:

c(u) = 0→M → K ⊕ P 0 → . . .→ Dn−2 ⊕D → D → 0.

Since that short exact sequence is a degreewise split exact sequence of complexes with both P

and L being Hom(−,Proj)-exact complexes, c(u) is Hom(−,Proj)-exact as well.

There is also an exact sequence

0→ D → c(u)→ c(ũ)→ 0

with D = 0 → D
id−→ D → 0 with D in the (n-1)th and (n-2)th place, and zeros

everywhere else. Again it is a degreewise short exact sequence of complexes and D and c(u)

are Hom(−,Proj)-exact complexes, so c(ũ) is also Hom(−,Proj)-exact,

c(ũ) = 0→M → K ⊕ P 0 → D0 ⊕ P 1 → . . .→ Dn−3 ⊕ P n−2 → Dn−2 → 0.

We need to show that c(ũ) is a right Gorenstein projective resolution of M . By the proof of

Theorem 8.2.8, we already know that M α−→ K ⊕ P 0 is a Gorenstein projective preenvelope,

where α := (d, u). So it is enough to show that Coker(α)→ D0⊕P 1 is a Gorenstein projective
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preenvelope. Note that the complex

0→ Coker(α)→ D0 ⊕ P 1 → . . .→ Dn−2 → 0

is also Hom(−,Proj)-exact where Coker(α) is finitely generated. So it is a right projective

resolution of Coker(α) with finitely generated projectives. By the proof of Theorem 8.2.8 (with

D replaced by the zero module in this case) Coker(α) → D0 ⊕ P 1 is a Gorenstein projective

preenvelope of Coker(α).

Continuing in this fashion we obtain that the complex c(ũ) is Hom(−,GP)-exact. Thus c(ũ)

is a right Gorenstein projective resolution of M .

8.3 Tate Derived Functors

In this section, we consider three derived functors of Hom by using right projective resolutions.

We discuss balance results and show that there exists a long exact sequence connecting them.

Definition 8.3.1. Let C,D and E be abelian categories and T : C × D → E be an additive

functor contravariant in the first variable and covariant in the second. Let F and G be classes of

objects of C and D, respectively. Then T is said to be left balanced by F × G if for each object

M ∈ C, there is a T (−,G)-exact complex

0→M → F 0 → F 1 → . . .

with each F i ∈ F , and if for every object N ∈ D, there is a T (F ,−)-exact complex

. . .→ G1 → G0 → N → 0

with Gi ∈ G.
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It is clear from the definition that if F is a preenveloping and precovering class in R-Mod

then Hom(−,−) is left balanced by F × F on R-Mod × R-Mod. For example, if R is a local

Noetherian ring, Hom(−,−) is left balanced by projR×ProjR on R-mod×R-Mod. So for any

M ∈ R-mod and N ∈ R-Mod, homologies at n, Hn(Hom(PM , N)) ∼= Hn(Hom(M,PN)),

where PM is a deleted right projective resolution of M and PN is a deleted left projective

resolution of N . We denote it as Extn(M,N), left derived functor of Hom(−,−).

Another example of our interest is the class GP of Gorenstein projective modules. If R is

a local n-Gorenstein ring, Hom(−,−) is left balanced by GPfg × GP on R-mod × R-Mod,

where GPfg is the class of finitely generated Gorenstein projective modules. So we denote by

Gextn(−,−) the left derived functor by means of Gorenstein projective modules.

Let M be an R-module having complete projective resolvent M → PM → TM . Since that

representation is unique up to homotopy, we may consider the derived functor Êxt
a

i (M,N) :=

Hi(Hom(TM , N)). For an R-module N having complete projective resolution T′N → PN →

N we can define another derived functor Êxt
b

i(M,N) := Hi(Hom(M,T′N)). Now we show

that the two procedures yield the same derived functors.

Proposition 8.3.2. Let R be local and n-Gorenstein. The derived functors Êxt
a

i (−,−) and

Êxt
b

i(−,−) are equal on R-mod×R-Mod.

Proof. Let

0→M → P 0(M)→ . . .→ P n−1(M)→ P n(M)→ . . .

be a right projective resolution of finitely generated R-module M and

. . .→ P2(N)→ P1(N)→ P0(N)→ N → 0

be a left projective resolution of N . By Proposition 8.2.7, D = Ker(P n(M) → P n+1(M)) is

Gorenstein projective. So there is a totally acyclic complex TM such that (TN)i = P i(M) for



215

all i ≥ n and D = Ker((TM)n → (TM)n+1). By Proposition 8.2.6, C = Ker(Pn−1(N) →

Pn−2(N)) is Gorenstein projective. Therefore there is a totally acyclic complex T′N of C such

that (T′N)i = Pi(N) for all i ≥ n and C = Ker((T′N)n−1 → (T′N)n−2). Shortly, we will use T

and T′ instead.

Consider the short exact sequence

0→ C0 → P0(N)→ N → 0.

If we apply the functor Hom(T,−), we get a short exact sequence of complexes

0→ Hom(T, C0)→ Hom(T, P0(N))→ Hom(T, N)→ 0.

Since T is a totally acyclic complex, we have an isomorphism Hi(Hom(T, N)) ∼=

Hi−1(Hom(T, C0)) for any i. Applying the same process for 0 → C1 → P1(N) → C0 → 0,

we get Hi(Hom(T, N)) ∼= Hi−2(Hom(T, C1)). Finally, we obtain Hi(Hom(T, N)) ∼=

Hi−n(Hom(T, C)) where Cn−1 = C = Ker(Pn−1(N)→ Pn−2(N)).

By [EEI12, Theorem 3.3], Hi−n(Hom(T, C)) ∼= Hi−n(Hom(D,T′)). Recall that

0→M → P 0(M)→ P 1(M)→ . . . P n−1(M)→ D → 0

is a partial right projective resolution of M . Let F i := Coker(P i−1(M) → P i(M)) where

P−1 := M . If we consider the exact sequence F n−2 → P n−1(M)→ D → 0 whose first map is

a projective preenvelope map, then the functor Hom(−,T′) converts it to a short exact sequence

of complexes

0→ Hom(D,T′)→ Hom(P n−1(M),T′)→ Hom(F n−2,T′)→ 0.

Since T′ is a totally acyclic complex of projectives, we obtain an isomorphism
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Hi−n(Hom(D,T′)) ∼= Hi−n+1(Hom(F n−2,T′)). Again by applying the same argument, we

get Hi−n(Hom(D,T′)) ∼= Hi(Hom(M,T′)), that is, Hi(Hom(T, N)) ∼= Hi−n(Hom(T, C)) ∼=

Hi−n(Hom(D,T′)) ∼= Hi(Hom(M,T′)).

Over a commutative local n-Gorenstein ring, we denote by Êxti(−,−) the derived functors

Êxt
a

i (−,−) = Êxt
b

i(−,−) on R-mod×R-Mod.

Theorem 8.3.3. Let R be local and n-Gorenstein. Let M be a finitely generated R-module and

N be an R-module. Then we have an exact sequence of left derived functors

0→ Êxtn−1(M,N)→ Extn−1(M,N)→ Gextn−1(M,N)→ Êxtn−2(M,N)→ . . .

. . .→ Gext0(M,N)→ Êxt−1(M,N)→ 0.

Proof. Take a right projective resolution of M

P = 0→M → P 0 → P 1 → . . . .

Since D := Ker(P n−1 → P n) is Gorenstein projective, let us consider a partial totally acyclic

complex of D

L = 0→ K → D0 → D1 → . . .→ Dn−2 → P n−1 → P n → . . . .

By the above we have a map of complexes u : P→ L with uj as in the proof of Theorem 8.2.9

for 0 ≤ j ≤ n− 2 and with uj = idP j for all j ≥ n− 1.

Note that the right Gorenstein projective resolution c(ũ) of M obtained in the proof of
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Theorem 8.2.9, is the mapping cone of the morphism

P̃ :

ũ
��

0 //M d //

u

��

P 0

uo
��

d // . . . // P n−2 //

un−2

��

0

L̃ : 0 // K
d′ // D0 d′ // . . . // Dn−2 // 0

.

Now consider the tail complex of P:

T : . . . // 0 // P n−1 −d // P n −d // . . .

with morphisms

P̃ :

ũ
��

. . . // 0 //M
d //

u

��

P 0

uo
��

d // . . . // P n−2 //

un−2

��

0

��

// . . .

L̃ :

−d′
��

. . . // 0 // K d′ //

��

D0 d′ //

��

. . . // Dn−2 //

−d′
��

0 //

��

. . .

T : . . . // 0 // 0 // 0 // . . . // P n−1 −d // P n −d // . . .

.

Note that −d′ ◦ ũ = −d and c(−d′) = L[1] and c(d) = P[1]. So we have a distinguished

triangle

c(ũ)→ c(−d′ ◦ ũ)→ c(d′)→ c(ũ)[1]

which is isomorphic to

c(ũ)→ P[1]→ L[1]→ c(ũ)[1].

Applying the Hom(−, N) functor to this distinguished triangle, we get the exact sequence

0→ Êxtn−1(M,N)→ Extn−1(M,N)→ Gextn−1(M,N)→ Êxtn−2(M,N)→ . . .

. . .→ Gext0(M,N)→ Êxt−1(M,N)→ 0.
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Notes in Mathematics, Vol. 221. Springer-Verlag, Berlin-New York.

[GP64] Popescu, N. & Gabriel, P. (1964) Caractérisation des catégories abéliennes avec
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